

Learning for Vision-Based Object Manipulation:
 A Shape Recognition-Based Approach

2024 2

Learning for Vision-Based Object Manipulation:
A Shape Recognition-Based Approach

SEUNGYEON KIM

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the

DEPARTMENT OF MECHANICAL ENGINEERING

at

SEOUL NATIONAL UNIVERSITY

February 2024

ABSTRACT

Learning for Vision-Based Object Manipulation:
A Shape Recognition-Based Approach

by

Seungyeon Kim

Department of Mechanical and Aerospace Engineering

Seoul National University

Vision-based object manipulation has emerged as a fundamental aspect of robotics,

encompassing tasks like grasping, pushing, and rearranging objects within complex en-

vironments. Recent technological advancements have led robots to increasingly rely on

vision sensors as their primary means of interacting with the surrounding objects or

environments. However, these interactions pose numerous challenges. From the inher-

ent data inefficiencies found in end-to-end deep learning approaches, requiring extensive

data collection and elaborate network training, to the various constraints that must be

i

navigated for practical application in real-world environments, addressing these chal-

lenges is pivotal to expanding the application scope of robotic object manipulation.

In this thesis, we demonstrate the effectiveness of mitigating many challenges associ-

ated with vision-based object manipulation through the integration of shape recognition

methods. This approach involves recognizing an object’s shape by aligning raw vision

data with a 3D model, subsequently generating robot actions (e.g., grasping and push-

ing) based on the object’s geometry. These methods not only address data inefficiencies

but also reduce the need for extensive data collection without compromising accuracy

and efficiency. We have discovered that 3D shape recognition of the scene effectively

resolves numerous challenges encountered in object manipulation, especially in practi-

cal application in real-world environments, significantly simplifying and enhancing the

handling of various challenging vision-based object manipulation problems. Our demon-

stration highlights that integrating shape recognition techniques into vision-based object

manipulation substantially enhances a robot’s interaction capabilities within its envi-

ronment. Consequently, our primary contribution lies in introducing shape recognition-

based object manipulation.

Building on this concept, we introduce a pioneering approach to grasping based

on shape recognition. This method integrates a diverse set of shape templates, particu-

larly deformable superquadrics, with a deep learning network referred to as the Defor-

mable SuperQuadric Network (DSQNet). DSQNet is designed to identify complete ob-

ject shapes by inferring deformable superquadrics from partial point cloud data. Thro-

ugh supervised learning, DSQNet generates the eight parameters and the pose of the

deformable superquadric, accurately aligning with the entire object shape, even con-

sidering occluded sections. Subsequent strategies for grasping account for the gripper’s

kinematic and structural attributes, leveraging the closed-form equations associated with

deformable superquadrics. Comparative analyses demonstrate DSQNet’s superiority over

ii

existing shape recognition baselines in both accuracy and speed. Notably, our shape

recognition-based method sets new standards in grasping success rates, surpassing pre-

vailing techniques, thanks to its precise shape recognition capabilities.

We then leverage the advantages of shape recognition to facilitate the learning of

pushing dynamics models. Initially, we also employ superquadrics to recognize object

shapes placed on tabletops. An inherent advantage of integrating shape recognition in

this context is its natural ability to define a SE(2)-equivariant pushing dynamics model.

This sets the stage for developing the SuperQuadric Pushing Dynamics Network (SQPD-

Net), a neural network-based SE(2)-equivariant pushing dynamics model. This approach

inherently acknowledges the symmetry within physical systems, resulting in substantial

improvements in generalization performance. Comparative assessments demonstrate that

our shape recognition-based model surpasses existing vision-based pushing dynamics

models, particularly due to the reinforced SE(2)-equivariance. Moreover, the effective-

ness of our model is further validated through its application in model-based optimal

controls across various pushing manipulation tasks, corroborated by both simulation and

real-world experiments.

Finally, we tackle the intricate task of mechanical search on cluttered shelves em-

ploying shape recognition methods. This task involves locating and grasping a specific

target object situated within a cluttered shelf environment, even when the target object

is occluded by other objects, eluding initial detection by vision sensors. In such sce-

narios, the robot’s task is to strategically rearrange nearby objects to reveal the target’s

position while avoiding collisions with the shelf and surrounding objects. To address

this challenge, we also leverage a superquadric shape recognition model. These models

enable the use of shape recognition-based object manipulation techniques developed in

this thesis, and moreover, facilitates quick and efficient reasoning about potential poses

of the occluded target object. They achieve this by expediting computations for various

iii

tasks like depth image rendering and collision checking. This empowers the robot to

effectively and safely find and grasp the target object. Our method demonstrates suc-

cess in finding and grasping the target object using a conventional robot gripper in both

simulated and real-world settings.

Keywords: Vision-based object manipulation, shape recognition, robotic grasping, push-

ing manipulation, pushing dynamics learning, mechanical search, object rearrange-

ment.

Student Number: 2019-39029

iv

Contents

Abstract i

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Learning for Vision-Based Object Manipulation 1

1.2 A Shape Recognition-based Approach 4

1.3 Contribution . 5

1.3.1 A Novel Shape Recognition-based Object Grasping Method . . . 5

1.3.2 Adopting Shape Recognition for Pushing Dynamics Learning . . 7

1.3.3 Mechanical Search on Shelves using Shape Recognition 7

1.4 Organization . 8

2 Preliminaries: Deformable Superquadrics 11

2.1 Introduction . 11

2.2 Superquadrics . 12

v

2.2.1 Superellipsoids . 12

2.2.2 Superparaboloids . 15

2.2.3 Supertoroids . 16

2.3 Deformable Superquadrics . 17

2.3.1 Tapering Deformation . 17

2.3.2 Bending Deformation . 18

2.3.3 Combined Deformation . 20

3 DSQNet: Deformable Superquadric Network 21

3.1 Introduction . 21

3.2 Related Works . 27

3.2.1 Optimization-based Recognition Methods for Grasping 27

3.2.2 Learning-based Recognition Methods for Grasping 28

3.3 Deformable Superquadric Network . 30

3.3.1 DSQNet Architecture . 31

3.3.2 Loss Function for Training . 34

3.4 Grasp Pose Generation Using Deformable Superquadric Primitives . . . 35

3.4.1 Antipodal Points Sampling for Deformable Superquadric Primitives 35

3.4.2 Grasp Pose Generation Algorithm 36

3.5 Experimental Results . 37

3.5.1 Fitting Using Only Partially Observed Point Clouds 37

3.5.2 Shape Recognition for Synthetic Objects 40

3.5.3 Recognition and Grasping on Real-world Objects 44

3.6 Additional Experimental Results . 50

3.6.1 Performance of DSQNet with Additional Occlusion 50

3.6.2 Enhancing Performance of DSQNet with Segmentation Results . 51

vi

3.6.3 Shape Uncertainty Aware Grasping Algorithm 55

3.6.4 Real-time Application of DSQNet for Human-Robot Collaboration 59

3.7 Beyond Superellipsoids: Adopting Superparaboloids for Tableware Objects 60

3.7.1 Unified Superquadric Network 60

3.7.2 Loss Function for Training . 62

3.7.3 Recognition and Grasping on Real-world Tableware Objects . . . 64

3.8 Conclusion . 67

4 SQPDNet: Superquadric Pushing Dynamics Network 71

4.1 Introduction . 71

4.2 Related Works . 74

4.2.1 Model-free Pushing Manipulation 74

4.2.2 Visual Pushing Dynamics Learning 74

4.2.3 Shape Recognition from Visual Observation 76

4.2.4 Invariance and Equivariance in Robot Learning 76

4.3 SE(2)-Equivariant Pushing Dynamics Models 77

4.4 Object Recognition-based Pushing Manipulation 81

4.4.1 Object Shape and Pose Recognition via Superquadrics 81

4.4.2 Model-based Pushing Manipulation 82

4.5 Pushing Manipulation Dataset . 84

4.6 Experimental Results . 87

4.6.1 Equivariance Study . 89

4.6.2 Pushing Dynamics Learning . 91

4.6.3 Pushing Manipulation using R-SQPD-Net 97

4.7 Additional Experimental Results . 101

4.7.1 Comparison with Data Augmentation 101

vii

4.7.2 Pushing Dynamics Learning on Real-world Pushing Data 105

4.7.3 Pushing Manipulation via Interaction 107

4.7.4 Pushing Manipulation using Physics-based Simulator 109

4.8 Conclusion . 112

5 Search-for-Grasp: Superquadric Recognition for Mechanical Search 113

5.1 Introduction . 113

5.2 Related Works . 116

5.2.1 Mechanical Search on Shelves 116

5.2.2 Object Rearrangement for Target Object Grasping 118

5.2.3 Shape Recognition-based Robot Manipulation 119

5.3 A General Framework for Mechanical Search and Grasping 119

5.4 3D Object Recognition-based Mechanical Search 123

5.4.1 Existence and Graspability Function Estimates f̂ and ĝ 124

5.4.2 Approximate Dynamics Models F̂ and Ĝ 125

5.4.3 Sampling-based Model Predictive Control 126

5.4.4 Action Space and Action Sampling Method 127

5.5 Experiments . 130

5.5.1 Simulation Experiments Results 131

5.5.2 Real-world Experiments Results 134

5.6 Additional Experimental Results . 137

5.6.1 3-Object Toy Experiment . 137

5.6.2 Mechanical Search via Only Pushing or Only Pick-and-place . . 140

5.6.3 Mechanical Search with Box Target Object 143

5.6.4 Ablation Study on Hyperparameter α 144

5.7 Conclusion . 146

viii

6 Conclusion 149

6.1 Summary . 149

6.2 Future Work . 152

6.3 Concluding Remark . 157

A Appendix: DSQNet 159

A.1 Synthetic Data Generation . 159

A.2 Training Segmentation Network and DSQNet 163

B Appendix: SQPDNet 167

B.1 Details for SE(2)-Equivariant Dynamics Model 167

B.1.1 Pose Decomposition . 167

B.1.2 Proof for Equivariance . 169

B.2 Details for Object Shape and Pose Recognition 170

B.3 Details for SQPD-Net . 173

B.4 Details for Pushing Manipulation . 175

B.5 Details for Grasping Cost Function . 175

C Appendix: Search-for-Grasp 179

C.1 Details for Object Shape Recognition . 179

C.2 Details for Existence Function Estimate f̂ 183

C.3 Details for Graspability Function Estimate ĝ 188

Bibliography 193

Abstract 218

ix

x

List of Tables

3.1 Network configuration for each predictor 32

3.2 Fitting error and IoU comparison between DSQNet and DSQOpt 39

3.3 IoU comparison between MVBB, PS-CNN, SQNet, and DSQNet for ob-

ject dataset . 42

3.4 Real-world object grasping results . 48

3.5 IoU comparison between SQNet, DSQNet, and DSQNet+ for object dataset 56

3.6 Grasping results with and without uncertainty score 57

4.1 Test visible flow error (cm). 90

4.2 Evaluation metrics computed within test dataset (the unit of flow error

is cm). 93

4.3 Simulation and real-world manipulation results. 101

4.4 Evaluation metrics for the learned pushing dynamics models; the units

for the flow error and pose error (pos. and ori.) are cm and (cm and

degree), respectively. 104

4.5 Translation and rotation errors computed with real-world data. 107

xi

4.6 Comparison of R-SQPD-Net and the Pybullet simulator in simulation-

based manipulation experiments. 111

5.1 Simulation manipulation results . 133

5.2 Search-for-grasp real-world manipulation results. 136

5.3 Manipulation results for 3-object toy experiment. 140

5.4 Simulation manipulation results for the one-type action experiments. . . 143

5.5 Simulation manipulation results for the box target object 145

A.1 Range of parameter values for primitive dataset 163

A.2 Range of parameter values for object dataset 164

xii

List of Figures

1.1 The box object and pushing vector in Scene 1 are transformed by some

same planar rigid-body transformation as those in Scene 2. An ideal

pushing dynamics model should be SE(2)-equivariant, i.e., the resulting

motion in Scene 2 is a transformation of that in Scene 1. 3

2.1 Examples of superellipsoids (upper row, Chapter 2.2.1), superparaboloids

(middle row, Chapter 2.2.2), and supertoroids (lower row, Chapter 2.2.3). 13

2.2 Radial distance δ between a point x0 and a superquadric f(x) = 1. . . 14

2.3 Examples of tapered superquadrics (upper row, Chapter 2.3.1), and bent

superquadrics (lower row, Chapter 2.3.2). 18

3.1 (a) Shape recognition results for superquadric versus deformable superq-

uadric primitives: the latter can capture the handle of the mug, whereas

the former cannot. (b) Shape recognition results using optimization-based

fitting versus DSQNet: the latter is able to capture the occluded parts of

the box that are missed by conventional methods. 24

3.2 Pipeline for proposed recognition-based grasping algorithm. 26

3.3 DSQNet architecture. 32

xiii

3.4 Shape recognition results for DSQNet and DSQOpt for six types of prim-

itive data sets. 39

3.5 Shape recognition results for MVBB, PS-CNN, SQNet, and DSQNet for

twelve types of object data sets. 41

3.6 Graph of volumetric IoU versus recognition time (calculation time) for

MVBB, PS-CNN, SQNet, and DSQNet. 44

3.7 Robot manipulator equipped with the vision sensor (left) and real-world

objects used in the grasping experiments (right). 45

3.8 Recognition and grasp pose generation results for real-world objects. . . 47

3.9 Shape recognition results for DSQNet for a cylinder with various occlu-

sion ratios. 50

3.10 Graph of average volumetric IoU versus occlusion ratio for DSQNet for

each object (left) and mean across the objects (right). 52

3.11 Two example cases where the original DSQNet recognizes inaccurate

shapes. 53

3.12 Neural network architectures of recognition models DSQNet and DSQNet+ 53

3.13 Shape recognition results for SQNet, DSQNet, and DSQNet+ for six

types of multi-part objects in object dataset. 54

3.14 Recognition and grasp pose generation results with and without uncer-

tainty score for real-world objects. 58

3.15 Examples of human-robot collaboration in scenarios involving the gra-

sping of a Cheez-It box. 59

3.16 Several examples of tableware objects. 61

3.17 Superquadric recognition network. 62

3.18 The representative examples of the superquadric shape recognition results. 65

xiv

3.19 Generated candidate grasp poses for various recognized superparaboloid

shapes. 66

3.20 Graspability description. The yellow bowl is graspable (upper row) and

the red dish is non-graspable (lower row) 66

3.21 Grasping results for real-world tableware objects. 68

4.1 The box object and pushing vector in Scene 1 are transformed by some

same planar rigid-body transformation as those in Scene 2. An ideal

pushing dynamics model should be SE(2)-equivariant, i.e., the resulting

motion in Scene 2 is a transformation of that in Scene 1. 72

4.2 Object Pose Decomposition. 79

4.3 SE(2)-equivariant pushing dynamics neural network architecture for an

i-th object, fi. 79

4.4 Sampling-based grasping criteria. 83

4.5 Known (red) and unknown (blue) object shapes used for data generation. 85

4.6 Execution of a pushing action. 86

4.7 Pushing action sampling method for a chosen object. 86

4.8 Illustration of the shape alignment method for superquadric objects. . . . 88

4.9 Depth images of prediction results. For SE3Pose-Net, after the point

cloud moves, the space occupied before is colored black. 90

4.10 The representative three examples of the equivariance study experiments. 92

xv

4.11 Depth images and 3D masks of the ground-truth next scene and pre-

dicted scenes. Upper: Depth images where the blue bounding boxes rep-

resent the ground-truth next poses of the green and gray objects. Lower:

(i) (incomplete) 3D masks converted from the depth images for 2DFlow,

SE3-Net, and SE3Pose-Net and (ii) predicted complete 3D masks for

3DFlow, DSR-Net, and R-SQPD-Net. 94

4.12 The representative examples of the pushing dynamics learning experi-

ments for the number of objects 1 and 2. 95

4.13 The representative examples of the pushing dynamics learning experi-

ments for the number of objects 3 and 4. 96

4.14 Real-world experimental setting. 98

4.15 Object sets used in moving, singulation, and grasping tasks. 98

4.16 Real-world manipulation results using R-SQPD-Net for moving, singula-

tion, and grasping tasks (for the fourth row case, the target object is the

cylinder surrounded by the three cubes). The red arrow at each recogni-

tion step means the optimal pushing action. 100

4.17 The representative examples of the failure cases for pushing manipulation.101

4.18 Random data augmentation during training. 102

4.19 A qualitative comparison of the pushing dynamics models trained with

and without our SE(2)-equivariant module and shape alignment module.

For each figure, transparent and bold objects represent the scene before

and after a pushing action is applied, respectively. 103

4.20 A qualitative comparison of the pushing dynamics models trained with

and without our modules. For each figure, transparent and bold objects

represent the scene before and after a pushing action is applied, respec-

tively. 105

xvi

4.21 Objects for real-world pushing data. 106

4.22 Real-world ground-truth pushing data (yellow) and pushing dynamics

prediction results of PyBullet physics simulator (blue) and trained R-

SQPD-Net (green). The initial pose of the object before being pushed is

indicated in gray color. 108

4.23 Real-world manipulation results using R-SQPD-Net for the interactive

moving task (the target object is the cylinder surrounded by cubes). The

red arrow at each recognition step means the optimal pushing action. . . 110

5.1 A 3D recognition-based mechanical search and grasping of the target

object (red cylinder). 114

5.2 Illustration on the existence function f(x). Upper: Observation. Lower:

Candidate poses and hypothetical rendering results. 121

5.3 Sampling process and predicted scene after applying the action for push-

ing and pick-and-place actions. 128

5.4 Visual description of the pushing action. 128

5.5 The left column shows the simulation and real environments, and in the

right column, objects used in each environment are visualized. In partic-

ular, the target object is marked in red in the simulation; the red-taped

can is the target object in the real experiment. 130

5.6 An example trajectory of simulation manipulation. Each column shows

the camera input and action selection at each time step. In the simula-

tion, surrounding objects are blue and the target object is red. 132

5.7 Search-for-grasp real-world manipulation results 135

5.8 Pre-defined object set used for real-world experiments. 135

xvii

5.9 Comparison of search-and-grasp and search-for-grasp methods to find

the target object (yellow cylinder). This figure is a conceptual figure,

not the result of implementing the methods. 137

5.10 Example trajectories of simulation manipulation for R-search-and-grasp

(Left) and R-search-for-grasp (Right). Each column shows the camera in-

put and action selection at each time step. In the simulation, surrounding

objects are blue and the target object is red. 139

5.11 Example trajectories of simulation using only pick-and-place and only

pushing. Each column shows the camera input and action selection at

each time step. In the simulation, surrounding objects are blue and the

target object is red. (Left) A scenario where only pick-and-place fails

but only pushing succeeds. (Right) A scenario where only pick-and-place

succeeds but only pushing fails. 142

5.12 An example trajectory of simulation manipulation for R-search-for-grasp

for the box-shaped target object. Each column shows the camera input

and action selection at each time step. In the simulation, surrounding

objects are blue and the target object is red. 145

5.13 Find and grasp success rates of R-Search-for-Grasp according to α. . . . 147

6.1 SE(2)-equivariant pushing dynamics neural network architecture consid-

ering physical object properties for an i-th object. 155

6.2 Recognized shapes via deformable superquadrics and their mass distri-

butions. 156

A.1 Types of synthetic objects (primitive types and object types) and dataset

generated from the synthetic objects (primitive dataset and object dataset).161

xviii

A.2 Synthetic dataset configurations: primitive types with shape parameters

(upper row), and object types with assembly configuration of the shape

primitives (lower row). 162

A.3 Three predictions of segmentation labels, ground-truth labels, and the bi-

partite matching between prediction and ground-truth labels. 165

B.1 Object Pose Decomposition. 169

B.2 Superquadric Recognition network. The red dots are the points with label

1 and the black dots are the points with label 0 in the partially observed

point cloud. 172

B.3 Detail network architecture of SQPD-Net. 174

B.4 Candidate grasp poses for various recognized superquadric shapes. . . . 176

B.5 Gripper mesh, sampled gripper point cloud from the mesh, and point

cloud with the camera’s point cloud. 177

C.1 Overall process for object shape recognition. 180

C.2 Input and output representation of the superquadric recognition model. . 182

C.3 Overview of depth image rendering process from recognized superqua-

dric functions. 184

C.4 Illustration on the collision condition fc(x). Candidate poses and colli-

sion checking results. 187

C.5 The examples of the candidate grasp poses for various object shapes

(Left) and the robot trajectory for a selected grasp pose (right). 189

C.6 Illustration on the grasp trajectory collision detection. Candidate grasp

trajectories and collision checking results. 189

xix

xx

1
Introduction

1.1 Learning for Vision-Based Object Manipulation

Interacting with and manipulating objects is a fundamental skill in robotics, crucial for

both human-robot collaboration and the automation of a wide array of tasks. Object ma-

nipulation can generally be categorized into two primary methods: (i) prehensile manip-

ulation, where a robot directly holds or grasps an object, maintaining continuous con-

tact, and (ii) non-prehensile manipulation, where the robot influences an object’s pose or

movement without continuously grasping onto it. For instance, prehensile manipulation

involves picking up an object, while non-prehensile manipulation might entail pushing

objects on a table or throwing them into a bucket. When objects are identifiable and

their CAD models or physical properties (e.g., mass, inertia, and friction coefficient) are

known, the problem of object manipulation becomes substantially more straightforward.

Such scenarios benefit from well-understood, reliable, and efficient model-based solu-

tions that have found prominence in structured manufacturing environments (see [1, 2]

for grasping and [3, 4, 5, 6] for pushing). However, in practice, especially in many of

1

2 Introduction

today’s warehouse logistics and automation environments, a far more common scenario

is the need to manipulate, in real-time, unknown objects that the robot encounters for

the first time. These objects might not have available CAD models or known physical

properties, and they may be only partially visible due to, for instance, occlusions. In

this thesis, we address the vision-based object manipulation problem of interacting with

objects using solely camera vision data.

Spurred in part by the tremendous success of deep learning networks in recognizing

and detecting objects within images, there has recently been a surge in interest in em-

ploying these networks to manipulate partially visible unknown objects. One of the pre-

vailing methods involves using deep networks that directly process raw vision data (e.g.,

RGB images or depth images) and output the corresponding robot actions. For prehen-

sile manipulation, several studies have focused on generating a grasp pose for an object

directly from raw vision data using trained deep neural networks [7, 8, 9, 10, 11, 12,

13, 14, 15, 16]. For non-prehensile manipulation, especially pushing manipulation, there

are chiefly two types of approaches: (i) model-free methods which train a policy that di-

rectly maps raw vision data to a sequence of pushing actions, maximizing a task-specific

reward function [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and

(ii) model-based methods. The latter first construct a pushing dynamics model that pre-

dicts subsequent vision data after a robot executes a pushing action. This is followed

by identifying an optimal sequence of pushing actions that meet a predefined task cri-

teria [34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. It’s worth noting that this thesis places its

emphasis on model-based methods for non-prehensile manipulation. These methodolo-

gies have proven effective in rapidly and precisely executing object manipulation tasks

through a straightforward pass of the neural network.

Despite the widely reported successes of deep learning-based methods, these im-

pressive results often come with significant costs and effort. Deep learning methods

1.1. Learning for Vision-Based Object Manipulation 3

Figure 1.1: The box object and pushing vector in Scene 1 are transformed by some same

planar rigid-body transformation as those in Scene 2. An ideal pushing dynamics model

should be SE(2)-equivariant, i.e., the resulting motion in Scene 2 is a transformation of

that in Scene 1.

necessitate very large datasets, typically comprising hundreds of thousands to millions

of vision sensor data-robot action pairs. For learning prehensile manipulation, physics-

based simulations are frequently employed to supplement the real data obtained experi-

mentally. However, as is widely recognized, the accuracy of any physics-based simula-

tor—especially when multiple contacts with friction are involved—is often questionable

at best. As expected, training the network with such extensive datasets can be both

time-consuming and computationally demanding. A particularly critical issue in prehen-

sile manipulation is that the trained network tends to be reliable only for the gripper

used during data collection or those of a very similar design. Different gripper designs

inevitably necessitate some degree of re-training using newly collected data.

Moreover, beyond the data-driven methods for learning non-prehensile manipulation,

this thesis argues that their generalization performances, even with large-scale datasets,

are still less than satisfactory. One of the significant reasons for this shortfall is that the

neural network models employed in existing approaches do not adequately account for

4 Introduction

the symmetry of the physical systems—more precisely, they lack equivariance. Consider

a pushing dynamics model designed for model-based pushing manipulation. Suppose

this model is trained using an experience where a robot pushes a box in the direc-

tion indicated by a red arrow, as illustrated in Figure 1.1 (Scene 1). Now, envision a

new scenario in which the same box is positioned differently, yet the robot pushes it

in the same relative direction, as depicted in Figure 1.1 (Scene 2). Intuitively, an effec-

tive model should be able to generalize effortlessly to such scenarios, where tabletop

objects undergo translation or rotation along the z-axis. In more technical language, the

pushing dynamics model must exhibit equivariance to the SE(2) transformation. Un-

fortunately, many state-of-the-art data-driven methods lack this equivariance property,

leading to suboptimal learning performances.

For these and other reasons, learning both prehensile and non-prehensile manipula-

tions using only camera vision data remains a practical challenge.

1.2 A Shape Recognition-based Approach

In this thesis, we propose shape recognition-based object manipulation, a method that

involves recognizing the object shape by matching raw vision data to a 3D shape and

subsequently generating robot actions (such as grasping and pushing) based on the ob-

ject’s geometry. Shape recognition methodologies bypass many inherent limitations, par-

ticularly those related to data inefficiencies. The extensive requirements of data collec-

tion and network training, typical of end-to-end strategies, are circumvented through the

object shape recognition phase. Some of these shape recognition methods are indepen-

dent of training datasets [44, 45, 46, 47, 48, 49, 50], while others require considerably

less data for model training [51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. Our aim is to devise

methods that effectively conduct object manipulation, capitalizing on shape recognition’s

1.3. Contribution 5

data efficiency.

Moreover, this thesis demonstrates that numerous challenges encountered in object

manipulation can effectively be addressed using shape recognition methods. The key in-

sight is that 3D reasoning of a scene from visual observations, particularly through 3D

shape recognition, significantly simplifies and enhances the handling of various challeng-

ing vision-based object manipulation problems. Building on this perspective, we have

developed shape recognition-based object manipulation algorithms for grasping unknown

objects, learning pushing dynamics models for tabletop object manipulation, and con-

ducting mechanical searches in cluttered shelf environments. The main contributions of

the thesis are outlined in the following chapters.

1.3 Contribution

1.3.1 A Novel Shape Recognition-based Object Grasping Method

For prehensile manipulation, various shape recognition-based grasping techniques have

been introduced. In these methodologies, recognition and grasp pose generation are de-

coupled, allowing for the application of traditional grasp pose generation algorithms

(e.g., [1, 2]) to the identified 3D shape. Thus, these methods can accommodate a broader

range of grippers by simply modifying the grasp pose generation module. Nonetheless,

metrics such as computational time or grasp success rate hinge on the precision and ef-

ficiency of object recognition, making the choice of object representation crucial. Object

representation spans from basic shape primitives like boxes, spheres, cylinders, and other

standard shapes [44, 45, 46, 47, 48, 49, 54, 59], to advanced 3D representations like

voxel-valued or implicit function representations [51, 58, 60]. While the latter can detail

various and intricate shapes but often demand prolonged planning stages to produce fea-

sible grasp poses, so they are not suitable for scenarios where real-time manipulation is

6 Introduction

required. Conversely, the former quickly deduces the grasp pose, but it may fall short in

representing intricacies of complex objects, potentially reducing the grasp success rate.

Thus, the challenge remains in selecting an object representation that optimally balances

these trade-offs.

Building on this discussion, we introduce a novel shape recognition-based grasping

method that integrates a more extensive set of shape templates, namely the deformable

superquadrics, with a deep learning network. This network, termed Deformable Super-

Quadric Network (DSQNet), is trained to identify complete object shapes using a set of

deformable superquadrics inferred from partially observed point cloud data input. These

deformable superquadrics are characterized by eight continuous parameters, enabling

them to represent a diverse array of shapes. Additionally, closed-form surface equations

are available [61, 62, 63], facilitating the efficient computation of point-to-surface dis-

tances for fitting. We devise a suite of deformable superquadric primitives tailored for

grasping applications. This suite offers a harmonious blend of expressiveness and effi-

ciency. Through supervised learning, the DSQNet produces the eight parameters along

with the pose of the deformable superquadric, ensuring alignment with the complete

shape of the object, inclusive of occluded sections. Our findings indicate that DSQNet

can recognize object shapes both accurately and swiftly when compared with existing

shape recognition-based baseline methods. Leveraging precise shape recognition, our ap-

proach also tops the charts in grasping success rates among existing techniques. Notably,

our recognition-driven method demonstrates a grasping performance on par with many

prevalent end-to-end strategies. This is achieved while enjoying the benefits of minimal

training data requirements and adaptability to a broad spectrum of grippers, in contrast

to the constraints of end-to-end methods.

1.3. Contribution 7

1.3.2 Adopting Shape Recognition for Pushing Dynamics Learning

Taking the same perspective, we extend the advantages of shape recognition to the prob-

lem of learning non-prehensile manipulation, with a particular focus on learning pushing

dynamics. While shape recognition has conferred numerous benefits in grasping prob-

lems, its application to pushing manipulation remains unexplored. Mirroring the grasp-

ing method described earlier, we first recognize the shapes of the objects on the tabletop

using superquadrics. One significant advantage of introducing shape recognition to this

domain is the natural ability to define the SE(2)-equivariant pushing dynamics model,

allowing us to purposefully design a neural network architecture inherently possessing

the equivariance property. To this end, we introduce a neural network-based SE(2)-

equivariant pushing dynamics model named SuperQuadric Pushing Dynamics Network

(SQPD-Net). Central to ensuring the model’s equivariance is the appropriate transforma-

tion of the pushing action coordinates and the objects’ poses. This method inherently

accounts for the symmetry of the physical systems, leading to substantial enhancements

in generalization performance. Our results demonstrate that our shape recognition-based

model outperforms existing vision-based pushing dynamics models, especially with the

aid of SE(2)-equivariance. Further validation of our model’s effectiveness is provided

through its application in model-based optimal controls for various pushing manipula-

tion tasks, corroborated by both simulation and real-world experiments.

1.3.3 Mechanical Search on Shelves using Shape Recognition

The final contribution of this thesis addresses the practical yet challenging task of me-

chanical search on cluttered shelves. This entails finding and grasping a desired target

object on a cluttered shelf, even when the target is occluded by unknown objects and

initially remains undetected by a vision sensor. In such scenarios, the robot has the

8 Introduction

responsibility to rearrange the surrounding objects in order to determine the target’s

pose and subsequently grasp it, ensuring all the while that it avoids collisions with the

shelf and adjacent objects. The geometric configuration of the shelf, which permits vi-

sual observations exclusively from the front and restricts the manipulator’s operational

space, introduces further challenges. We employ shape recognition models to tackle this

problem, specifically the superquadric recognition model mentioned previously. By inte-

grating the prehensile and non-prehensile manipulation techniques we developed above,

the superquadric object representation further facilitates fast depth image rendering and

collision assessments. This empowers the robot to effectively and safely (i.e., without

causing collision) find the target object. We have corroborated the efficacy of our ap-

proach, demonstrating its capability to find and grasp target objects using a conventional

two-finger robot gripper, both in simulations and real-world scenarios. Importantly, our

method remains robust even when faced with noise originating from vision sensor data

in real-world environments.

1.4 Organization

In Chapter 2, we review the superquadrics and their deformable counterparts. We begin

by offering a succinct description of the formulas associated with superquadrics, en-

compassing both their implicit surface functions and surface normal vectors, which are

essential for grasp pose generation. Subsequently, we introduce a more expressive set of

shapes termed deformable superquadrics. These are derived by applying global tapering

and bending deformations to the vanilla superquadrics. We conclude the chapter by de-

riving the formulas needed to determine the surface normal vector of these deformable

superquadrics.

In Chapter 3, we introduce a novel shape recognition-based grasping method that

1.4. Organization 9

advances beyond existing techniques. We begin by detailing a shape recognition model

called the Deformable Superquadric Network (DSQNet). This model takes partially ob-

served point cloud data as its input and produces the eight parameters and the pose

of the deformable superquadric, ensuring it aligns with the complete shape of the par-

tially observed object, even accounting for occluded sections. We then elaborate on how

our comprehensive framework depicts the object using multiple deformable superqua-

drics, incorporating an additional segmentation step when the object consists of several

parts. Additionally, we explain the training processes for both the segmentation network

and the DSQNet. Through comparative analysis, we demonstrate that our method out-

performs its counterparts in terms of accuracy and computational speed. Furthermore,

we validate that our shape recognition-based grasping method consistently achieves the

highest success rate when compared to existing methods. This chapter is based on [64].

In Chapter 4, we introduce a shape recognition-based pushing dynamics model that

exhibits the SE(2)-equivariance property, setting it apart from existing approaches. We

begin with a detailed definition of the SE(2)-equivariant pushing dynamics model and

purposefully design a neural network architecture which, by its construction, possesses

the equivariance property. Importantly, we elucidate the fundamental approach to en-

sure model equivariance by appropriately transforming the coordinates associated with

the pushing action and the objects’ poses. Subsequently, we detail the neural network-

based SE(2)-equivariant pushing dynamics model, termed SuperQuadric Pushing Dy-

namics Network (SQPD-Net), which draws from the superquadric recognition model.

In the latter part of this chapter, we formulate a model-based pushing manipulation

problem, designed to manipulate objects utilizing the acquired pushing dynamics model

aligned with predefined task criteria. Our evaluations show that our dynamics model

consistently outperforms existing state-of-the-art methods in predicting post-push object

10 Introduction

trajectories. Furthermore, we validate the effectiveness of our model through its appli-

cation in model-based optimal control scenarios across a range of pushing manipulation

tasks, with results validated in both simulated and real-world settings. This chapter is

based on [65].

Chapter 5 addresses the challenge of mechanical search on cluttered shelves, lever-

aging the merits of the shape recognition method. We begin by outlining a pioneering

framework to find and grasp a target object using a standard gripper, incorporating both

prehensile and non-prehensile manipulations. Specifically, we introduce two key indica-

tor functions: (i) an existence function, which discerns the potential presence of the tar-

get, and (ii) a graspability function, assessing the viability of grasping the detected tar-

get. Subsequently, we formulate a model-based optimal control problem, termed Search-

for-Grasp. We further detail how the proposed indicator functions and their correspond-

ing dynamics models can be adeptly estimated by harnessing a shape recognition model.

Our evaluations reveal that our approach reliably finds and grasps the target object us-

ing a standard robotic gripper in both simulated and real-world environments. Notably,

we demonstrate the adaptability and robustness of our method in the face of noise from

real-world vision sensors. This chapter is based on [66].

2
Preliminaries: Deformable

Superquadrics

2.1 Introduction

In this chapter, we review the use of deformable superquadrics as a set of shape primi-

tives. The superquadrics constitute an extended set of quadric surfaces [61, 62], and they

are further categorized into superellipsoids, superparaboloids, and supertoroids. Chapter

2.2 briefly describes the formulas for these superquadrics, including their implicit sur-

face functions and surface normal vectors (needed for grasp pose generation). Through-

out this dissertation, we use the term “superquadrics” to exclusively refer to superel-

lipsoids, except for Chapter 3.7; this excluded section introduces algorithms that utilize

both superellipsoids and superparaboloids.

Although more expressive than quadrics, superquadrics are still limited by their in-

ability to capture tapered and bent objects. Chapter 2.3 describes more expressive shape

primitives named deformable superquadrics, obtained by applying global tapering and

11

12 Preliminaries: Deformable Superquadrics

bending deformations to superquadrics [67, 63]. Formulas for determining the surface

normal vector of deformable superquadrics are also derived.

2.2 Superquadrics

2.2.1 Superellipsoids

The superellipsoids are an extended set of ellipsoid surfaces that can be used to repre-

sent diverse shapes ranging from boxes, cylinders, and ellipsoids to bi-cones, octahedra,

and other complex symmetric shapes, even those with rounded corners and edges. The

corresponding implicit equations for a superellipsoid surface are of the form

f(x, y, z) =

(∣∣∣∣ xa1
∣∣∣∣

2
e2

+

∣∣∣∣ ya2
∣∣∣∣

2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣

2
e1

= 1, (2.2.1)

where a1, a2, a3 are size parameters and e1, e2 are shape parameters. Some examples of

possible shapes (with fixed size parameters) are shown in the upper row of Figure 2.1.

The implicit function of Equation (2.2.1) can be explicitly parametrized using polar

coordinates (θ, φ) as follows:

x =

⎡
⎢⎢⎢⎣
x

y

z

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
a1 cos

e1 θ cose2 φ

a2 cos
e1 θ sine2 φ

a3 sin
e1 θ

⎤
⎥⎥⎥⎦ , (2.2.2)

where −π/2 ≤ θ ≤ π/2 and −π ≤ φ ≤ π. Note that for exponent e, cose θ :=

sgn(cos θ)| cos θ|e, and sine θ is defined similarly.

The outward pointing surface normal vector n of a superellipsoid surface at a point

2.2. Superquadrics 13

Figure 2.1: Examples of superellipsoids (upper row, Chapter 2.2.1), superparaboloids

(middle row, Chapter 2.2.2), and supertoroids (lower row, Chapter 2.2.3).

14 Preliminaries: Deformable Superquadrics

Figure 2.2: Radial distance δ between a point x0 and a superquadric f(x) = 1.

x(θ, φ) can be calculated as the vector product of the two tangent vectors ∂x
∂φ and ∂x

∂θ :

n(x) =
∂x

∂φ
× ∂x

∂θ
= c(θ, φ)

⎡
⎢⎢⎢⎣

1
a1

cos2−e1 θ cos2−e2 φ

1
a2

cos2−e1 θ sin2−e2 φ

1
a3

sin2−e1 θ

⎤
⎥⎥⎥⎦ , (2.2.3)

for some scalar function c(θ, φ) (for our purposes c(θ, φ) can be ignored since we only

require the surface normal direction).

Distance between a point and a superellipsoid δ. There is no closed-form solu-

tion for the shortest distance between a point x0 and a superquadric surface f(x) = 1.

Instead, we obtain another distance form that has a closed form, named the radial dis-

tance, and we primarily use this distance form when fitting data points (or a data point

cloud) to a superquadric. The radial distance δ(x0, f) between a point x0 and a super-

quadric f(x) = 1 is defined by the Euclidean distance between x0 and x1 – x1 is the

intersection point of the surface f(x) = 1 and the straight line connecting x0 and the

origin of the superquadric – as described in Figure 2.2.

2.2. Superquadrics 15

The intersection point x1 can be written as x1 = βx0, where β is a positive scalar

value. Since the point x1 lies on the surface of the superquadric, the equation f(x1) = 1

must be satisfied. Since f(x1) can be rewritten as

f(x1) =

(∣∣∣∣βx0a1

∣∣∣∣
2
e2

+

∣∣∣∣βy0a2

∣∣∣∣
2
e2

) e2
e1

+

∣∣∣∣βz0a3

∣∣∣∣
2
e1

= β
2
e1 f(x0), (2.2.4)

we can obtain β in a closed form as follows:

β = f− e1
2 (x0). (2.2.5)

Thus, the radial distance δ between the point x0 and the superquadric f(x) = 1 can be

calculated with a closed-form solution:

δ = ||(1− β)x0|| = ||x0|||1− f− e1
2 (x0)|. (2.2.6)

2.2.2 Superparaboloids

The superparaboloids are the geometric shapes that resemble paraboloids, and the im-

plicit function for a superparaboloid surface has the following form

f(x, y, z) =

(∣∣∣∣ xa1
∣∣∣∣

2
e2

+

∣∣∣∣ ya2
∣∣∣∣

2
e2

) e2
e1

−
(

z

a3

)
= 1, (2.2.7)

where a1, a2, a3 controls the sizes and e1, e2 controls the geometric shapes. Some exam-

ples of the superparaboloids are shown in the middle row of Figure 2.1. Similarly, the

implicit function of Equation (2.2.7) can be explicitly parametrized using coordinates

(θ, u) as follows:

x =

⎡
⎢⎢⎢⎣
x

y

z

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
a1u cos

e2 θ

a2u sin
e2 θ

a3(u
2
e1 − 1)

⎤
⎥⎥⎥⎦ , (2.2.8)

16 Preliminaries: Deformable Superquadrics

where −π ≤ θ ≤ π and 0 ≤ u ≤ 1. The surface normal vector n of a superparaboloid

can be calculated in the same way as in the case of superquadrics using this explicit

representation.

2.2.3 Supertoroids

The supertoroids are the geometric shapes that resemble toroids, and the implicit func-

tion for a supertoroid surface has the following form

f(x, y, z) =

⎛
⎝(∣∣∣∣ xa1

∣∣∣∣
2
e2

+

∣∣∣∣ ya2
∣∣∣∣

2
e2

) e2
2

− a4

⎞
⎠

2
e1

+

(
z

a3

) 2
e1

= 1, (2.2.9)

where a1, a2, a3, a4 controls the sizes and e1, e2 controls the geometric shapes. Espe-

cially, a4 controls the size of the hole, while a1 and a2 control the thickness of the

shape. Some examples of the supertoroids are shown in the lower row of Figure 2.1.

Similarly, the implicit function (2.2.9) can be explicitly parametrized using coordinates

(θ, φ) as follows:

x =

⎡
⎢⎢⎢⎣
x

y

z

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
a1(a4 + cose1 θ) cose2 φ

a2(a4 + cose1 θ) sine2 φ

a3 sin
e1 θ

⎤
⎥⎥⎥⎦ , (2.2.10)

where −π ≤ θ ≤ π and −π ≤ φ ≤ π. The surface normal vector n of a supertoroid

can be calculated in the same way as in the case of superellipsoids using this explicit

representation.

2.3. Deformable Superquadrics 17

2.3 Deformable Superquadrics

2.3.1 Tapering Deformation

In the case of tapering, a shape is gradually thinned or expanded along some direction.

A parametric tapering deformation Dt along the z-axis is defined to be

x =

⎡
⎢⎢⎢⎣
x

y

z

⎤
⎥⎥⎥⎦ �−→ X =

⎡
⎢⎢⎢⎣
tk(z)x

tk(z)y

z

⎤
⎥⎥⎥⎦ , (2.3.11)

where tk(z) is called the tapering function with tapering parameter k. In our later ex-

amples we will make frequent use of the linear tapering function

tk(z) =
k

a3
z + 1, (2.3.12)

where −1 ≤ k ≤ 1. Observe that the tapered superquadrics correspond to the original

superquadrics when k = 0. Examples of tapered superquadrics are shown in the upper

row of Figure 2.3.

To calculate the surface normal vector of deformable superquadrics, the formulas for

inverse transformations and Jacobian matrices of the deformation functions are required.

The inverse transformation D−1
t of the tapering deformation Dt is simply calculated by:

X =

⎡
⎢⎢⎢⎣
X

Y

Z

⎤
⎥⎥⎥⎦ �−→ x =

⎡
⎢⎢⎢⎣

1
tk(Z)X

1
tk(Z)Y

Z

⎤
⎥⎥⎥⎦ . (2.3.13)

The Jacobian matrix ∂Dt/∂x of the tapering deformation Dt is obtained by:

∂Dt

∂x
(x) =

⎡
⎢⎢⎢⎣
tk(z) 0 ∂tk

∂z (z)x

0 tk(z)
∂tk
∂z (z)y

0 0 1

⎤
⎥⎥⎥⎦ . (2.3.14)

18 Preliminaries: Deformable Superquadrics

Figure 2.3: Examples of tapered superquadrics (upper row, Chapter 2.3.1), and bent

superquadrics (lower row, Chapter 2.3.2).

2.3.2 Bending Deformation

Among the many possible bending deformations (e.g., parabolic, V-shaped), we will

mostly rely on the parametric bending deformation Db that bends the z-axis into a

circular section via the deformation

x =

⎡
⎢⎢⎢⎣
x

y

z

⎤
⎥⎥⎥⎦ �−→ X =

⎡
⎢⎢⎢⎣
x+ (R− r) cosα

y + (R− r) sinα

(b−1 − r) sin γ

⎤
⎥⎥⎥⎦ , (2.3.15)

where

γ = zb,

r = cos(α− atan2(y, x))
√

x2 + y2, (2.3.16)

R = b−1 − (b−1 − r) cos γ.

2.3. Deformable Superquadrics 19

Here b > 0 and α respectively represent the degree and direction of bending in the

x-y plane. The deformable superquadric converges to the original superquadric as b ap-

proaches zero. Examples for bent superquadrics are shown in the lower row of Fig-

ure 2.3.

The inverse transformation D−1
b of the bending deformation Db is calculated by:

X =

⎡
⎢⎢⎢⎣
X

Y

Z

⎤
⎥⎥⎥⎦ �−→ x =

⎡
⎢⎢⎢⎣
X − (R′ − r′) cosα

Y − (R′ − r′) sinα
γ′
b

⎤
⎥⎥⎥⎦ , (2.3.17)

where

R′ = cos(α− atan2(Y,X))
√
X2 + Y 2,

r′ = b−1 −
√
(Z2 + (b−1 −R′)2, (2.3.18)

γ′ = atan2(Z, b−1 −R′).

We note that the values (r,R, γ) for the transformation Db and the (r′, R′, γ′) for the

inverse transformation D−1
b have the same meaning, i.e., they are the same values, but

expressed in different coordinates. The Jacobian matrix ∂Db/∂x is obtained by:

∂Db

∂x
(x) =

⎡
⎢⎢⎢⎣
1 + rx(cos γ − 1) cosα ry(cos γ − 1) cosα (1− rb) sin γ cosα

rx(cos γ − 1) sinα 1 + ry(cos γ − 1) sinα (1− rb) sin γ sinα

−rx sin γ −ry sin γ (1− rb) cos γ

⎤
⎥⎥⎥⎦ ,

(2.3.19)

where

rx =
−y sin(α− atan2(y, x)) + x cos(α− atan2(y, x))√

x2 + y2
, (2.3.20)

ry =
x sin(α− atan2(y, x)) + y cos(α− atan2(y, x))√

x2 + y2
.

20 Preliminaries: Deformable Superquadrics

2.3.3 Combined Deformation

Tapering and bending can be concatenated in the obvious way, i.e., D = Db ◦Dt (note

that the two deformations are not commutative, i.e., Db ◦Dt �= Dt ◦Db). Applying D to

a superquadric surface f(x) = 1, the implicit equations for a deformable superquadric

surface are of the form f ◦D−1(X) = 1; we denote this implicit surface equation by

fD ≡ f ◦D−1.

Finally, the surface normal vector N of the deformable superquadric surface f ◦
D−1(X) = 1 at a point X = D(x) can be calculated as follows:

N(X) = det

(
∂D

∂x

)
∂D

∂x

−T

n(x), (2.3.21)

where n(x) is the surface normal vector of the superquadric surface f(x) = 1 at the

point x. The Jacobian matrix of the combined deformation ∂D/∂x can be calculated

by:

∂D

∂x
(x) =

∂Db

∂x
(Dt(x))

∂Dt

∂x
(x). (2.3.22)

3
DSQNet: Deformable

Superquadric Network

3.1 Introduction

The problem of grasping known objects for which prior CAD models are available is by

now well-understood, with several reliable and efficient model-based solutions deployed

in structured manufacturing settings (see, e.g., [1, 2]). In practice, however, especially in

many of today’s warehouse logistics and automation environments, a far more prevalent

scenario is the need to grasp, in real-time, unknown objects that are seen for the first

time by the robot (or more specifically, for which prior CAD models of the objects are

not available) that may be only partially visible because of, e.g., occlusions.

Spurred in part by the great success of deep learning networks in the recognition and

detection of objects in images, recently there has been considerable interest in applying

deep learning networks to the problem of grasping partially visible unknown objects.

Existing approaches can be roughly divided into those that are end-to-end, in the sense

21

22 DSQNet: Deformable Superquadric Network

of training a deep neural network to generate a grasp pose for an object directly from

the raw vision data input, [7, 8, 9, 10, 11, 12, 13, 14, 15], and two-step methods (or

alternatively, recognition-based methods) that first attempt to recognize the object shape

by matching the raw vision data to a set of predefined shape primitives [45, 46, 47,

54, 48, 59, 49, 68, 50] or general 3D representation such as voxel-valued or implicit

functions representations [51, 58, 60, 69, 70, 71], and then to generate a grasp pose

based on the object geometry. In particular, this chapter focuses on shape primitive-

based two-step grasping methods.

Despite the widely reported successes of end-to-end methods, these impressive re-

sults are usually obtained at significant cost and effort. End-to-end methods typically

require very large data sets, on the order of hundreds of thousands to millions of vision

sensor data-grasp pose pairs. Physics-based simulations are widely used to augment the

experimentally obtained real data, but as is well-known, the accuracy of any physics-

based simulator, particularly when multiple contacts with friction are involved, remains

questionable at best. Not surprisingly, network training also can be very time-consuming

and computationally expensive for such large data sets. Finally, and perhaps most crit-

ically, the trained the network will only work reliably for the gripper used to collect

the training data, or those that are very similar in design; different gripper designs will

inevitably require some level of re-training with newly collected data. We refer to the

survey paper for comprehensive reviews for the end-to-end grasping methods [16].

Recognition-based methods overcome many of the limitations of end-to-end meth-

ods, at the cost of relying on object shape models that may lack sufficient generality.

Large data collection and expensive network training of end-to-end methods are now

replaced by an object shape recognition step, which requires analysis and additional

3.1. Introduction 23

real-time computation based on certain assumptions made about the objects. Some ap-

proaches require no training data sets at all [44, 45, 46, 47, 48, 49, 50] or consider-

ably less data [54, 59, 68]. Since recognition and grasp pose generation are decoupled,

recognition-based methods can be used for a wider range of grippers simply by modi-

fying the grasp pose generation module.

The main limitations of existing recognition-based methods are, not surprisingly, in

the accuracy and overall performance of the object recognition. Most recognition meth-

ods rely on the use of shape primitives, e.g., boxes, spheres, cylinders, and other stan-

dard shapes, with which even simple everyday objects such as bottles and mugs often

cannot be easily represented. For example, even the most expressive among currently

used shape primitives, the superquadric [44, 49], has difficulty in capturing the mug of

Figure 3.1(a).

A more critical limitation of existing recognition-based methods is that they typically

involve a computation-intensive optimization as an intermediate step, in the form of

optimally fitting a given shape primitive to a set of partially observed point cloud data.

The optimization usually cannot be performed in real-time. Worse, the local optima

obtained sometimes bear no relation to the actual object: because only partial point

cloud data are fitted, the fitted primitives can often miss entirely the occluded parts

of the objects (see Figure 3.1(b) for the case of a box). Techniques like point cloud

mirroring [49] have had some limited success in overcoming some of these deficiencies,

but mostly for simple symmetric objects like boxes, cylinders, and spheres.

In this paper, we directly address the two fundamental limitations of current recogni-

tion based grasp generation methods. First, we employ a richer class of shape primitives,

the deformable superquadrics [63]. The deformable superquadrics are parametrized thro-

ugh eight continuous parameters and can express a more varied range of shapes (see

Figure 3.1(a) and 2.3). Closed-form surface equations are also available [61, 62, 63],

24 DSQNet: Deformable Superquadric Network

Figure 3.1: (a) Shape recognition results for superquadric versus deformable superqua-

dric primitives: the latter can capture the handle of the mug, whereas the former cannot.

(b) Shape recognition results using optimization-based fitting versus DSQNet: the lat-

ter is able to capture the occluded parts of the box that are missed by conventional

methods.

3.1. Introduction 25

which can, in turn, be used to efficiently calculate point-to-surface distances for fitting.

We construct a set of deformable superquadric primitives targeted for grasping applica-

tions that can be easily concatenated and balances expressiveness with efficiency.

The second, and more significant, contribution is that rather than attempt to opti-

mally fit a deformable superquadric surface to a set of partially observed point cloud

data, we instead develop a supervised learning algorithm for this purpose. Specifically,

we design a neural network architecture – we refer to the network as the Deformable

Superquadric Network (DSQNet) – that takes as input the partially observed point cloud

data, and outputs the eight parameters and the pose of the deformable superquadric

so that it matches the full shape of the object, including the occluded parts (see Fig-

ure 3.1(b)). To train DSQNet, a dataset consisting of pairs of a ground-truth point cloud

and a corresponding partially observed point cloud is constructed: (i) a set of synthetic

primitive object shapes are generated, and (ii) for each primitive shape, a ground-truth

point cloud is uniformly sampled, and a partially observed point cloud is rendered us-

ing a simulated depth camera. The network is then trained to minimize fitting errors

between the ground-truth point cloud and the predicted deformable superquadric.

Our recognition-based method proceeds in three steps as shown in Figure 3.2: (i) a

trained segmentation network – for our purposes we use the DGCNN [72] network – is

used to segment a partially observed point cloud into a set of simpler point clouds; (ii)

The trained DSQNet converts each point cloud into a deformable superquadric primi-

tive, with its collective union representing the full object shape; (iii) grasp poses are

generated in a gripper-dependent manner from the recognized full shapes. For a two-

finger gripper, a sampling-based grasping algorithm that exploits the closed-form surface

equations for deformable superquadrics to find antipodal grasp points is used.

Our approach retains the many advantages of recognition-based methods, and at

26 DSQNet: Deformable Superquadric Network

Figure 3.2: Pipeline for proposed recognition-based grasping algorithm.

the same time exploits the learning framework used in end-to-end approaches to pre-

cisely address the two critical limitations of existing recognition-based methods (real-

time recognition, and identifying object shapes from partial point cloud data). Recogni-

tion is performed quickly and accurately with a simple forward pass of the neural net-

work. Using a range of everyday objects, extensive experiments and benchmark compar-

isons against existing methods highlight both the strengths, and also potential areas of

improvement, of our approach. On recognizing household objects, our method achieves

the highest accuracy (with respect to volumetric IoU) and fastest computation speeds

among existing recognition-based methods. Conducting over 150 trials of physical gra-

sping experiments involving 15 standard household objects, our grasping method shows

a 93% success rate, outperforming current state-of-the-art methods by over 7%.

3.2. Related Works 27

3.2 Related Works

3.2.1 Optimization-based Recognition Methods for Grasping

Optimization-based recognition methods predict the full shape of the object, including

occluded parts, under the assumption that most everyday objects are combinations of

simple shapes (e.g., box). Another underlying reason for this assumption is that grasp

poses can be quickly and easily generated for such objects.

Optimization-based recognition using shape primitives. A common feature of opt-

imization based methods is that they attempt to find a set of shape primitives that best

fit the partially observed point cloud data. The set of pre-defined geometric shape primi-

tives can be bounding boxes [45], shapes consisting of cylinders, boxes and spheres [46,

47], or some customized shape primitive sets [48]. It is important to note that these

simple shape primitives cover only a limited subset of possible shapes; for example,

ellipsoids and cones cannot be easily represented using these existing shape primitives.

Using superquadrics beyeond using pre-defined shape primitives. Several studies

have used superquadric shape primitives as one possible remedy. Using five continuous

parameters, superquadrics can represent a wider range of shapes, and also have closed-

form parametric equations that can be used to efficiently fit the primitive to the given

point cloud data [61, 62]. Previous works that use superquadrics to fit target objects for

grasp planning include [44, 73]. More recently, several works have focused on super-

quadric fitting of unknown objects based on depth sensor data [74, 49, 75, 76]. [50]

predicts a superquadric representation of a local part of the target object. It bears re-

peating that superquadrics are still not expressive enough to represent common shapes

of everyday objects, e.g., cones, or handles of cups and mugs. One of the contribu-

tions of this paper is the application of a richer set of shape primitives, the deformable

superquadrics [63].

28 DSQNet: Deformable Superquadric Network

Heuristics for optimization-based recognition. Optimization-based methods for oc-

cluded object recognition are almost always accompanied by a set of heuristics designed

to detect, e.g., symmetries in the partially observed point cloud, for example extrusion

detection [74], symmetric plane detection [77], or point cloud mirroring [49]. These ex-

isting methods are only applicable to box-, cylinder-, or sphere-like objects with simple

symmetry; extension to more complex object shapes is not straightforward. There have

been attempts to capture shape uncertainty of more complex shapes using Gaussian pro-

cesses [78], but these methods also have difficulties when large parts of the object are

occluded.

3.2.2 Learning-based Recognition Methods for Grasping

To address the limitations of shape optimization methods, learning-based recognition

methods that rely on deep neural networks have been proposed. Unlike optimization-

based methods, learning-based methods do not rely on heuristics or simplifying assump-

tions; rather, they rely on experiential training data to predict the occluded parts of

the objects. Another important advantage of learning-based methods is that real-time

recognition is possible with just a simple forward pass of the neural network.

Learning object shapes using general 3D representation. One class of learning-

based methods predicts the full shape of the object by using general 3D representation

such as voxel-valued or implicit function representations. [51] trains a 3D convolutional

neural network to predict the occupancy grids (a type of voxel-valued representation).

[58] learns a parametric object implicit function (more specifically, a neural network that

takes a 3D query point as input and outputs signed distance from the object surface).

[60] proposes a network that predicts a voxel-valued representation of a local part of

the target object. [69] developes a method for generating a 3D voxel grid directly from

3.2. Related Works 29

RGB-D images. [70] integrates uncertainty into their shape completion network in which

the network predicts the likelihood of accuracy for each point in the generated model.

[71] presents a technique for predicting the depth image of an object’s ’back’ side using

a masked depth image. This process allows for the rapid combination of the front and

back sides to create a complete object mesh. These methods all share the disadvantage

of a time-consuming planning stage to generate feasible grasp poses. For example, the

recognized object mesh is fed into the computationally expensive GraspIt! or used to

perform a time-consuming grasp quality optimization for these high-dimensional object

representations.

Jointly learning 3D recognition and grasp planner. Recently, various approaches

integrate a grasp generation network with a shape completion module to expedite the

process of grasp pose generation. [79] uses a dual-network strategy, involving one net-

work for shape completion and another for predicting grasp outcomes. They observe

enhanced performance in the grasp prediction network when it utilizes the feature space

created by the shape completion network. [80] and [81] implement a shape completion

network that processes voxelized point cloud inputs. This network’s outputs are then

employed to concurrently train a network focused on refining grasp poses. [82] em-

phasizes the interconnection between 3-D reconstruction and grasping and accordingly

adopt a self-supervised method to reconstruct an object and determine a suitable grasp.

[83] focuses on simultaneously regressing a grasp pose while also reconstructing an

object’s point cloud.

Learning object shapes via 3D shape primitives. Other works have attempted to

use neural networks to recognize object shapes by predicting a set of shape primitives

rather than their general 3D representations [54, 59, 68]. Like optimization-based meth-

ods, these methods can efficiently generate grasp poses. At the same time, they can

recognize objects quickly and directly without the use of heuristics. [54] uses a deep

30 DSQNet: Deformable Superquadric Network

neural network to output shape primitives consisting of cylinders, boxes, or spheres to

predict the full object shapes. The more recent [59] and [68] use pre-defined finite shape

templates as primitives: the point cloud is first segmented into simpler point clouds us-

ing a trained deep network, after which each segment is recognized using the best-fitting

shape template.

Our work is also in the spirit of [54, 59, 68] in merging learning methods with

shape primitives. Because the shape primitives used in existing methods are not ex-

pressive enough to capture a large class of common everyday objects, we propose a

deep learning based recognition framework that uses the more expressive deformable

superquadrics as shape primitives.

3.3 Deformable Superquadric Network

We now describe the Deformable Superquadric Network (DSQNet), a deep neural net-

work that takes a partially observed point cloud P := {xi ∈ R
3}Ni=1 as input, and

outputs the deformable superquadric primitive that best represents the full object shape.

P is obtained by observing an object from a (synthetic or real-world) depth camera.

Specifically, DSQNet predicts the following parameters (see Chapter 2.2): size a =

(a1, a2, a3) ∈ R
3, shape e = (e1, e2) ∈ R

2, tapering coefficient k ∈ R, bending coeffi-

cients b ∈ R and α ∈ S
1, and a pose T ∈ SE(3) that arbitrarily translates and rotates

the canonical surface fD(x) = 1 in three-dimensional space. Using the predicted pa-

rameters, the surface equation for the deformable superquadric primitive at the pose T

can be written as follows:

fD(T
−1x) = 1. (3.3.1)

3.3. Deformable Superquadric Network 31

Note that DSQNet is not trained to merely fit the partially observed point cloud, but

rather the ground-truth point cloud Pg := {xg,i ∈ R
3}Ng

i=1, which is obtained by uni-

formly sampling the surface of the object. In this regard, the objective of the DSQNet

is to achieve the approximate equality

fD(T
−1xg,i) ≈ 1 for all i = 1, ..., Ng. (3.3.2)

Below we discuss further requirements on the network architecture and loss function

for training.

3.3.1 DSQNet Architecture

The neural network architecture for DSQNet is shown in Figure 3.3. The first require-

ment of DSQNet is that it should be permutation-invariant, i.e., the output should not

depend on how the input point cloud data are ordered. Among existing permutation-

invariant networks, we adopt the EdgeConv layers from the Dynamic Graph Convo-

lution Neural Network (DGCNN) [72]. The input point cloud P passes through five

EdgeConv layers with point-wise latent space dimensions (64, 64, 128, 256) and a max

pooling layer, producing a 1024-dimensional global feature vector that captures semantic

information about P in a permutation-invariant manner.

The global feature vector is then passed through additional networks (described be-

low) before producing the output deformable superquadric parameters: size a, shape e,

tapering k, bending (b, α), and pose T.

• A lower bound of 0.2 is imposed on each of the shape parameters e = (e1, e2) ∈
R
2 to prevent Equation (2.2.1) from diverging as e1 or e2 goes to zero. Also, to

prevent the shapes from becoming overly complex, e.g., non-convex shapes that

are less likely to occur in practice, an upper bound of 1.7 is imposed.

32 DSQNet: Deformable Superquadric Network

Figure 3.3: DSQNet architecture.

Table 3.1: Network configuration for each predictor

PREDICTOR Individual layers Output Constraints

Translation (512, 256, 3) p -

Rotation (512, 256, 4, normalize) q S
3

Size (512, 256, 3, sigmoid) a [0.03,0.53]

Shape (512, 256, 2, sigmoid) e [0.2,1.7]

Tapering (512, 256, 1, sigmoid) k [-0.9,0.9]

Bending
(512, 256, 1, sigmoid) b′ [0.01,0.75]

(512, 256, 2, normalize) α S
1

3.3. Deformable Superquadric Network 33

• For the bending parameter b ∈ R, instead of directly predicting b, we predict the

value b′ := max(a1, a2)b, with b′ bounded to the interval [0.01, 0.75] to prevent

overfitting of irregular shapes.

• For the direction of bending α ∈ S
1, we predict the two-dimensional vector α =

(cosα, sinα) which is restricted to a unit circle S
1 in R

2.

• For the pose T = [R;p] consisting of the translation vector p = (px, py, pz)

and rotation matrix R ∈ SO(3), we use the unit quaternion representation q =

(qx, qy, qz, qw) for R, where q is restricted to be of unit norm.

The network architecture consists of seven fully-connected multilayer perceptrons

(512, 256) followed by leaky ReLU nonlinearities. The result of each layer (a 256-

dimensional feature vector) is then passed to a final linear layer and an additional non-

linearity that outputs p,q, a, e, k, b′, and α, all while satisfying the constraints and

bounds in Table 3.1.

Point Cloud Preprocessing Partially observed point cloud data of an object can

have many different numerical representations depending on the reference frames used.

We introduce a preprocessing technique that standardizes the point cloud numerical rep-

resentation, reducing the complexity of the data statistics and thereby accelerating neural

network training. For each partially observed point cloud data, we first apply principal

component analysis and obtain orthogonal eigenvectors v1, v2, v3 ∈ R
3 with correspond-

ing eigenvalues λ1 < λ2 < λ3. The points are represented with respect to a frame whose

origin coincides with the point cloud center of mass, with axes aligned along the prin-

cipal axes V = [v2, v1, v3] ∈ R
3×3. The length scale for the partially observed point

cloud is then scaled so that the distance between the two furthest points is one. In the

case of the primitive dataset, the same preprocessing procedure is also applied to the

ground-truth point cloud.

34 DSQNet: Deformable Superquadric Network

3.3.2 Loss Function for Training

The loss function used to train DSQNet measures the fit between the ground truth

point cloud Pg and the surface corresponding to the deformable superquadric parameters

{a1, a2, a3, e1, e2, k, b, α} and pose T. Making use of Equation (3.3.2) for the distance

between a point and a deformable superquadric surface, one obvious choice of loss

function is

1

Ng

Ng∑
i=1

‖fD(T−1xg,i)− 1‖2, (3.3.3)

where fD denotes the canonical surface equation for the deformable superquadric. In

[84] it is shown that the above loss function can lead to deformable superquadric sur-

faces with large shape parameter e1 or large volume
√
a1a2a3. [84] remedies this by

proposing the following distance between a point x0 ∈ R
3 and a deformable superqua-

dric surface fD(x) = f ◦D−1(x) = 1:

δ(x0, fD) = ||x0||
∣∣∣1− f− e1

2 ◦D−1(x0)
∣∣∣ , (3.3.4)

where ‖·‖ denotes the Euclidean norm. The loss function corresponding to this distance

metric is

L =
1

Ng

Ng∑
i=1

δ2(T−1xg,i, fD). (3.3.5)

To prevent overfitting and also to improve stability and convergence of the optimization,

a regularization term can also be added. Since bending and tapering occur along the

z-axis of the superquadric, motivated by the heuristic proposed in [63], we use the

following loss function:

L =
1

Ng

Ng∑
i=1

(δ2(T−1xg,i, fD)) + w||z× zg||2, (3.3.6)

where z (i.e., the third column of the rotation R) and zg are respectively the predicted

and ground-truth z-axes of the pose of deformable superquadric, and w is a weighting

3.4. Grasp Pose Generation Using Deformable Superquadric Primitives 35

parameter (for our later experiments we set w to 0.01).

3.4 Grasp Pose Generation Using Deformable Superqua-

dric Primitives

We now describe how to generate feasible grasp poses given the recognized shape ex-

pressed as a set of deformable superquadric primitives. Once the shape of an object is

recognized, for a given gripper we can apply conventional grasp pose generation tech-

niques [1, 2]. Our focus in this paper will be on parallel jaw grippers; consequently we

adopt an antipodal points sampling-based grasp pose generation method. We first de-

scribe the antipodal points sampling algorithm for deformable superquadric primitives,

then describe our grasp pose generation algorithm using the sampled pairs of antipodal

points.

3.4.1 Antipodal Points Sampling for Deformable Superquadric Prim-

itives

The problem of finding antipodal points is defined as follows [85]: for a given surface

S, find two points x1,x2 ∈ S such that

n(x1) + n(x2) = 0, (3.4.7)

(x1 − x2)× n(x1) = 0, (3.4.8)

where n(x) is the normal vector to the surface at x ∈ S. The antipodal sampling method

is well-suited to deformable superquadric primitives, since surface normal vectors can

be efficiently calculated using the closed-form Equation (2.3.21).

The pairs of antipodal points are sampled via the following steps. First, candidate

points are uniformly sampled on the surfaces of the recognized deformable superquadric

36 DSQNet: Deformable Superquadric Network

primitives {fDj ,Tj}np

j=1. Then, for each sampled point x1, solutions x∗ to Equation

(3.4.8) are obtained by finding the intersection points between a line l(t) = x1+n(x1)·t,
where t ∈ R, and all deformable superquadric primitives. Finally, for every two points

x1,x
∗, we verify a relaxed version of equation (3.4.7): n(x1) ·n(x∗) < −0.9||n(x1)|| ·

||n(x∗)||. Among all intersection points x∗ that satisfy the above requirements, the one

that is furthest from x1 – we denote this point x2 – is chosen to be the antipodal point

to x1.

Finding the intersections between a line l and a deformable superquadric fD(T
−1x)

= 1 is not trivial, since the equation g(t) = fD(T
−1 · l(t))− 1 = 0 has no closed-form

solution for t ∈ R. Therefore, for each deformable superquadric primitive, we use a

Newton-Raphson method to find the furthest intersection x∗ = l(t∗) from x1 = l(0)

among the solutions of g(t) = 0 and t > 0. For initial guesses we use the intersections

between the line l(t) and a sphere centered at the deformable superquadric origin with

radius is max(a1, a2, a3), which can be obtained via closed-form solutions.

3.4.2 Grasp Pose Generation Algorithm

After the antipodal point pairs are sampled using the above algorithm, six-dof grasp

poses are generated heuristically for each sampled antipodal point pair. For each pair,

the gripper’s approach vector is sampled at intervals of 30 degrees (i.e., twelve grasp

poses for each pair). At the final stage, the algorithm checks for collisions and kinematic

feasibility of the grasp pose. Among all grasp poses that satisfy the requirements, we

choose a grasp pose whose approach vector is closest to the direction of gravity, to favor

top-down grasping so as to ease the problem of finding a collision-free path. As a result

we calculate the grasp score c as the negative inner product between the normal vector

of the table zt and the grasp approach vector z, i.e., c = −zT zt; the grasp pose with

3.5. Experimental Results 37

the maximum c is chosen. When there are multiple grasp poses with the maximum c

(e.g., multiple top-down grasp poses), we randomly select one grasp pose among these.

Our grasp pose generation algorithm is summarized in Algorithm 1.

3.5 Experimental Results

We now describe experiments comparing (i) the baseline performance of DSQNet against

other state-of-the-art methods for a range of shape recognition tasks, and (ii) the grasp

success rates of our recognition-based grasping method against existing methods for

grasping of real-world objects.

3.5.1 Fitting Using Only Partially Observed Point Clouds

In the first set of experiments, we confirm that optimization-based shape recognition

methods – fitting only the partially observed point cloud to a deformable superquadric –

do not fare well in predicting the full object shape, and verify that a supervised learning

framework can greatly enhance the recognition performance.

We compare shape recognition results between DSQNet and the Deformable Super-

quadric Optimization (DSQOpt) method for a range of test sets of the primitive dataset.

DSQOpt minimizes the Gross and Boult point-to-surface error metric between the par-

tially observed point cloud and the deformable superquadric, i.e., equation (3.3.4), using

the gradient descent method. For a fair comparison, DSQOpt uses the same ranges of

deformable superquadric parameters as those for DSQNet.

As illustrated in Figure 3.4, both qualitative and quantitative experimental results

confirm that DSQNet is more successful than DSQOpt in determining complete shapes

of objects close to the ground-truth. For a quantitative analysis, we use the average

Gross and Boult point-to-surface error (lower-the-better) and the average volumetric

38 DSQNet: Deformable Superquadric Network

Algorithm 1 Grasp Pose Generation Using Deformable Superquadric Primitives
1: Input: Deformable superquadric primitives

2: {fDj ,Tj}np

j=1.

3: Output: Grasp pose gf ∈ SE(3).

4: Uniformly sample points Ps := {xs,i ∈ R3}ns
i=1

5: gf = I4, cf = 0

6: for i = 1 : ns do

7: E = ∅, x1 = xs,i

8: Compute n(x1) using (2.3.21)

9: for j = 1 : np do

10: Find the solutions t > 0 of fDj(T
−1
j · l(t)) = 1

11: t∗ = the maximum value among the solutions

12: x∗ = l(t∗)

13: Compute n(x∗) using (2.3.21)

14: if n(x1) · n(x∗) < −0.9||n(x1)|| · ||n(x∗)|| then

15: E ← E ∪ {x∗}
16: end if

17: end for

18: if E �= ∅ then

19: x2 = the furthest point in E from x1

20: Generate grasp poses {gk}12k=1 for (x1,x2)

21: for k = 1 : 12 do

22: if kinematic feasible and not collide then

23: c = −zT zt

24: if c > cf then

25: cf ← c, gf ← gk

26: end if

27: end if

28: end for

29: end if

30: end for

3.5. Experimental Results 39

Figure 3.4: Shape recognition results for DSQNet and DSQOpt for six types of primitive

data sets.

Table 3.2: Fitting error and IoU comparison between DSQNet and DSQOpt

METHOD B E CY C TC TT

DSQOpt, error 1.7e-4 1.8e-5 2.6e-4 2.5e-4 2.2e-4 9.1e-4

DSQNet, error 2.5e-3 7.1e-3 4.1e-3 3.5e-3 3.1e-3 1.3e-2

DSQOpt, IoU .4194 .8640 .3924 .2637 .4116 .1378

DSQNet, IoU .8288 .8423 .8575 .8394 .8292 .7584

40 DSQNet: Deformable Superquadric Network

intersection over union (IoU) measure between the predicted and ground-truth mesh

(higher-the-better) as shown in Table 3.2. The partially observed point clouds fit well

to both deformable superquadric surfaces predicted from DSQOpt and DSQNet. Al-

though the point-to-surface error is much lower for DSQOpt than DSQNet for all prim-

itive types, DSQNet achieves higher volumetric IoU, with an average of over 0.75. For

DSQOpt, since the occluded parts of the objects are not fitted, the predicted shapes

differ significantly over these regions, resulting in a poor IoU. In contrast, DSQNet

predicts the complete shape close to the ground-truth, even over occluded regions, with

the aid of ground-truth shape supervision, showing higher overall recognition perfor-

mance. Somewhat unusually, the optimization-based method also successfully predicts

the complete shape for the case of the ellipsoid.

3.5.2 Shape Recognition for Synthetic Objects

In the second set of experiments, we compare the performance of DSQNet against exist-

ing methods for shape recognition tasks. For the baseline methods, we use the minimum

volume bounding box approach (MVBB) and Primitive Shape CNN (PS-CNN), which

is the recognition method of the state-of-the-art recognition-based grasping methods. We

also compared the performance with the regular Superquadric Network (SQNet) which

is identical to DSQNet but uses regular (i.e., non-deformable) superquadrics.

The two baselines, SQNet, and DSQNet all predict full shapes of the segmented par-

tially observed point clouds, which are obtained using our segmentation network. The

minimum volume bounding box (MVBB) methods finds a minimum volume bound-

ing box for each segmented point cloud using principal component analysis [86]. The

bounding box approach has been successfully applied to certain recognition tasks [45],

thus we compare the performance of MVBB as a baseline.

3.5. Experimental Results 41

F
ig

u
re

3
.5

:
S

h
ap

e
re

co
g
n
it

io
n

re
su

lt
s

fo
r

M
V

B
B

,
P

S
-C

N
N

,
S

Q
N

et
,

an
d

D
S

Q
N

et
fo

r
tw

el
v
e

ty
p
es

o
f

o
b
je

ct
d
at

a

se
ts

.

42 DSQNet: Deformable Superquadric Network

Table 3.3: IoU comparison between MVBB, PS-CNN, SQNet, and DSQNet for object

dataset

OBJECT MVBB PS-CNN SQNet (ours) DSQNet (ours)

B .3795 .6442 .8517 .8759

E .3026 .7429 .8483 .8666

CY .5283 .7988 .8903 .8939

C .3065 .5946 .5421 .8039

TC .4448 .7504 .7340 .8264

TT .3546 .6141 .3691 .6759

Hammer .5293 .8101 .8358 .8208

Mug .4666 .8282 .7786 .8483

Screwdriver .5535 .8346 .8631 .8655

Padlock .4343 .6751 .8182 .8312

Dumbbell .4367 .7976 .7589 .7017

Bottle .4045 .7610 .8120 .8189

Average .4284 .7376 .7588 .8191

3.5. Experimental Results 43

PS-CNN is our customized implementation of [59], in which objects are recognized

using predefined shape templates consisting of finite shape primitives. Object shapes

are recognized by first segmenting the partially observed point cloud into simple point

clouds. Each segmented point cloud is then fitted to one of the shape templates using the

lowest fitting score for the Iterative Closest Point (ICP) algorithm. For a fair comparison,

we use a shape template consisted of 100 uniformly sampled shape parameters for each

primitive type (i.e., a total of 600 shapes). We modify our segmentation network to

provide primitive type information, since the original work predicts the shape type at

the segmentation stage.

We compare all methods both qualitatively and quantitatively for the test sets of

the object dataset. DSQNet shows the best shape recognition performance (volumetric

IoU) as shown in Figure 3.5 and Table 3.3. MVBB fails to recognize full shapes even

for boxes (B), and shows significantly lower IoU values compared to other methods.

Recognition performance of PS-CNN is moderately better but limited by the fact that

the shape template contains only a finite number of shapes. SQNet successfully recog-

nizes most of the shapes, but fails to recognize shapes that involve deformations (i.e., C,

TC, and TT). Among the four algorithms, DSQNet performs the best for most objects,

with an average volumetric IoU of 0.8191. For the dumbbell, DSQNet is outperformed

by SQNet and PS-CNN; this can be attributed to both ends of the dumbbell being rec-

ognized as a truncated torus, since the segmented point clouds at both ends have holes.

We also confirm that DSQNet shows the best performance in terms of both vol-

umetric IoU and recognition speed. Figure 3.6 shows a graph of average volumetric

IoU versus average recognition time for all objects. For PS-CNN, ten different exper-

iments with a range of shape templates are plotted; from left to right, the number of

shape templates of each primitive type is increased from 10 to 100 in increments of 10.

44 DSQNet: Deformable Superquadric Network

Figure 3.6: Graph of volumetric IoU versus recognition time (calculation time) for

MVBB, PS-CNN, SQNet, and DSQNet.

For PS-CNN, a trade-off exists between recognition speed and volumetric IoU; for PS-

CNN to achieve high recognition performance, the size of shape templates need to be

increased at the cost of longer computation time. MVBB takes 0.318 seconds, similar

to that of PS-CNN with 20 shape templates. SQNet and DSQNet are the fastest, tak-

ing only 0.038 and 0.043 seconds, respectively, while still showing the best recognition

performance.

3.5.3 Recognition and Grasping on Real-world Objects

In our final set of experiments, we evaluate the performance of our grasping method

against existing methods for real-world objects. Specifically, we compare the perfor-

mance of four recognition-based grasping methods that rely on different recognition

methods (MVBB, PS-CNN, SQNet, and DSQNet), while using the same antipodal points

3.5. Experimental Results 45

Figure 3.7: Robot manipulator equipped with the vision sensor (left) and real-world

objects used in the grasping experiments (right).

sampling-based method for the grasp generation step. For each method, ten trials are

conducted on different poses for each object, resulting in a total 150 trials.

We use a set of 15 household objects inspired from the YCB dataset [87] as shown

in Figure 3.7. For the robot arm and vision sensor, the seven-DOF Franka Emika Panda

robot with a parallel-jaw gripper and an Azure Kinect DK camera sensor mounted on

the gripper are used in our experiments. From the vision sensor data, the object point

clouds are obtained by discarding points of the table through plane fitting, and then

up/down-sampled to 1000 points. After the object point cloud is segmented via the seg-

mentation network, each segmented point cloud is also up/down-sampled to 300 points.

We down-sample points using the voxel down-sampling method, and up-sample points

by sampling points in the local tangent planes of the observed points [88].

To find feasible grasp poses from the grasp pose candidates, we use the FCL li-

brary [89] to check whether a grasp pose collides with the table or the recognized

46 DSQNet: Deformable Superquadric Network

objects, and also solve the inverse kinematics to determine whether a grasp pose is

kinematically feasible. After a grasp pose is determined, collision-free trajectory plan-

ning is performed using the Planning Scene module of MoveIt! [90]. Then the gripper

is moved to the final grasp pose and closed until contact is detected.

Grasping performance results are shown in Table 3.4. Our proposed DSQNet ap-

proach outperforms other recognition-based methods, with an average grasping success

rate of 93% across all objects. We believe the high grasping success rate of can be

attributed to the high recognition performance of DSQNet. DSQNet is capable of ac-

curate shape recognition of real-world objects, even though it is trained with only syn-

thetic data. Although a precise quantitative assessment of recognition performance for

real-world objects is difficult, our experiments confirm empirically that our method rec-

ognizes shapes of real-world objects that are close to the actual shapes as shown in

Figure 3.8. Accurate shape recognition aids robotic grasping by ensuring that the an-

tipodal points found in the recognized shape correspond to antipodal points on the actual

object.

Examining in more detail the causes behind grasping failure cases, the first case is

the result of a failure to achieve grasp closure; these can be traced to inaccurate shape

recognition caused by noisy vision sensing. The imperfect matching in shape with the

actual object can lead the robot to grasp air, or to collide with objects. The second case

prevalent is lifting failure, i.e., when the grasp pose cannot support the weight of the

object. Such cases occur when the the object is too heavy (for example, in the case of

the dumbbell) or when the grasp points are distant from the object center of mass (for

example, in the case of the hammer or mug). The analysis of failure cases suggests that

grasping performance can be improved by (i) using a more accurate vision sensor, or

more precise sensor noise models, to generate synthetic datasets, and (ii) finding grasp

poses capable of supporting the object weight by taking into account density prediction,

3.5. Experimental Results 47

F
ig

u
re

3
.8

:
R

ec
o
g
n
it

io
n

an
d

g
ra

sp
p
o
se

g
en

er
at

io
n

re
su

lt
s

fo
r

re
al

-w
o
rl

d
o
b
je

ct
s.

48 DSQNet: Deformable Superquadric Network

Table 3.4: Real-world object grasping results

OBJECT MVBB PS-CNN SQNet (ours) DSQNet (ours) DSQPose

Cheez-it 7/10 9/10 10/10 10/10 10/10

Jello 8/10 6/10 9/10 9/10 10/10

Cube 1/10 9/10 9/10 9/10 10/10

Pringles 7/10 10/10 10/10 9/10 9/10

Can 6/10 10/10 10/10 9/10 10/10

Tennis ball 7/10 10/10 10/10 10/10 10/10

Pumpkin 6/10 10/10 10/10 10/10 10/10

Mango 6/10 10/10 10/10 10/10 -

Banana 10/10 9/10 4/10 10/10 10/10

Padlock 8/10 7/10 4/10 9/10 10/10

Hammer 4/10 7/10 9/10 9/10 9/10

Mug 4/10 7/10 3/10 9/10 9/10

Bottle 7/10 9/10 7/10 9/10 9/10

Dumbbell 1/10 6/10 9/10 8/10 8/10

Screwdriver 7/10 10/10 10/10 9/10 10/10

Average 59% 86% 83% 93% 96%

3.5. Experimental Results 49

or the center of mass, of the objects.

Our recognition-based method also achieves comparable grasping performance com-

pared to the 80-90% success rates reported in many current end-to-end methods [7, 8,

9, 10], while having the advantages of requiring only a small number of training data,

and being applicable to a diverse range of grippers compared to end-to-end methods.

While the precise test objects may differ from those used in our experiments, the sim-

ilarity in the overall object classes lends credibility to the conclusions drawn from our

experiments.

To comprehensively evaluate the success rates of these recognition-based methods,

we have also implemented and assessed a method named DSQPose. DSQPose is essen-

tially a pose estimation-based methodology that utilizes ground-truth object shape infor-

mation. We first measure the absolute sizes (e.g., the radius and height of a cylinder)

of the objects and represent them almost accurately with a set of deformable superqua-

drics. During the recognition phase, each object’s pose is estimated by fitting the par-

tially observed point cloud to the ground-truth shape using the Iterative Closest Point

(ICP) algorithm. We use the same grasp pose generation algorithm to the obtained ob-

jects’ poses and ground-truth shapes as described in Chapter 3.4. The results of DSQ-

Pose lead to the following discussions: Firstly, DSQPose demonstrates a high success

rate of 96%, suggesting that the deformable superquadric shape primitive itself offers a

significant advantage in the task of grasping. Secondly, while DSQPose naturally out-

performs all other recognition-based methods due to its use of ground-truth shape infor-

mation, DSQNet shows a grasping success rate that is nearly comparable to DSQPose.

Lastly, even though the objects’ shapes are nearly accurately recognized, DSQPose can-

not achieve a 100% success rate with certain objects like dumbbells and hammers. This

is attributed to the fact that the mass distribution of the objects is not considered, as

mentioned earlier. This implies that there is a need to develop a grasping algorithm that

50 DSQNet: Deformable Superquadric Network

Figure 3.9: Shape recognition results for DSQNet for a cylinder with various occlusion

ratios.

accounts for the mass distribution of objects.

3.6 Additional Experimental Results

3.6.1 Performance of DSQNet with Additional Occlusion

We also explore how DSQNet’s shape recognition performance behaves when additional

occlusions are caused by other objects. In typical real-world scenarios involving clut-

tered environments, the target object is often occluded by other objects. We therefore

perform experiments to evaluate the robustness of DSQNet against additional occlusions

that DSQNet has never experienced.

We first introduce a virtual thin occlusion box (square-shaped), and generate oc-

cluded point clouds of the objects as shown in the left of Figure 3.9. The occlusion

ratio of a point cloud is then defined as the ratio of the number of points occluded

by the occlusion box to the total number of points. We note that each point cloud is

up/down-sampled to 300 points after occlusion. For each object, we randomly sample

the position and size of the occlusion box so that different occluded point clouds can

3.6. Additional Experimental Results 51

be obtained. We use the 10 test sets for each single-primitive object (i.e., B, E, CY, C,

TC, and TT) from the object dataset in our earlier the occlusion experiment.

The right of Figure 3.9 shows an example of shape recognition results for vari-

ous occlusion ratios. As the occlusion ratio increases, the object’s point cloud becomes

more incomplete, and accordingly, the prediction of DSQNet increasingly deviates from

the ground-truth shape. However, although DSQNet has never experienced such point

clouds, the predicted shapes qualitatively resemble the ground-truth shapes up to an oc-

clusion ratio of 20%.

To measure the recognition performance drop quantitatively, we draw a graph of the

average volumetric IoU versus occlusion ratio as shown in Figure 3.10. For each ob-

ject used in the experiment, ten occluded point clouds are sampled for each bin in the

graph (e.g., 5%, 5∼10%) with occlusion ratios in the corresponding range. As the occlu-

sion ratio increases, the volumetric IoU decreases consistently for all objects. However,

even when the occlusion ratio is about 25∼30 %, the overall average IoU has a value

higher than 0.7, which is higher than the average performance of PS-CNN as shown

in Table 3.3. These experimental results verify that our algorithm exhibits a degree of

robustness to occlusion by other objects.

3.6.2 Enhancing Performance of DSQNet with Segmentation Results

As described in Chapter 3.3.1, the proposed DSQNet converts each segmented point

cloud Pi = {xij ∈ R
3}Ni

j=1 into deformable superquadric parameters {a1, a2, a3, e1, e2, k,
b, α} and pose T. While DSQNet demonstrates improved shape recognition performance

compared to previous works, it still has several limitations. First, if the number of points

Ni in the segmented point cloud is fewer than 300, we up-sample the point cloud to

300 to facilitate its use as input for DSQNet. However, this up-sampling method is

52 DSQNet: Deformable Superquadric Network

Figure 3.10: Graph of average volumetric IoU versus occlusion ratio for DSQNet for

each object (left) and mean across the objects (right).

not entirely accurate, often resulting in an unnatural point cloud, particularly when the

original number of points is small. This can lead to decreased recognition performance.

A more critical limitation arises when recognizing multi-part objects, especially when

one part occludes another in a partially observed point cloud. For instance, consider the

case of recognizing a dumbbell as shown in Figure 3.11. Since DSQNet processes only

segmented point clouds, it may inaccurately predict the middle part of the dumbbell to

be shorter than it is, as depicted on the left, or predict a completely erroneous shape,

as shown on the right. Such inaccuracies in recognition can limit the range of feasible

grasp poses or result in the generation of unsuccessful grasp poses.

For this reason, we design a new neural network architecture named DSQNet+ that

better reflects the overall shape context of multi-part objects utilizing the segmentation

results. The most significant difference between DSQNet+ and DSQNet is in the repre-

sentation of the input. The input to DSQNet+ is a point cloud with 4-dimensional points

P ′
i = {xij ∈ R

4}nj=1; for each point xij , the first three components are equal to xj , and

the last element of each point is 1 if xij ∈ Pi and 0 otherwise, for all j = 1, ..., n. This

3.6. Additional Experimental Results 53

Figure 3.11: Two example cases where the original DSQNet recognizes inaccurate

shapes.

Figure 3.12: Neural network architectures of recognition models DSQNet and DSQNet+

54 DSQNet: Deformable Superquadric Network

Figure 3.13: Shape recognition results for SQNet, DSQNet, and DSQNet+ for six types

of multi-part objects in object dataset.

representation contains information not only about the segmented point cloud of inter-

est but also about the overall shape through the surrounding point cloud. Obviously,

the need for down-sampling or up-sampling during the inference phase is effectively

eliminated. Other than the input representation, the output representation, the network

architecture – except for the first layer of the network –, and the loss function remain

the same as those of DSQNet. The differences between DSQNet and DSQNet+ are

described in Figure 3.12.

We compare SQNet, DSQNet, and DSQNet+ both qualitatively and quantitatively

3.6. Additional Experimental Results 55

on the test sets of the object dataset. Figure 3.13 displays the recognition results for

all methods across six types of multi-part objects in the object dataset. We confirm that

DSQNet+ generally exhibits superior recognition performance compared to the other

methods. In the case of mug and padlock objects, DSQNet tends to predict smaller han-

dles that are only partially visible because they are occluded by the cylinder, whereas

DSQNet+ accurately predicts even the hidden parts. For bottle objects, both SQNet and

DSQNet demonstrate poor performance, largely due to some parts having a small num-

ber of points, leading to inaccuracies in the upsampling and inference processes. Par-

ticularly noteworthy is the case of dumbbells, where SQNet and DSQNet often pre-

dict a shortened middle part. Additionally, DSQNet sometimes represents one end of

the dumbbell as a truncated torus due to the segmented point clouds having a hole.

In contrast, DSQNet+ consistently predicts the correct shape, even in these challenging

scenarios. Table 3.5 presents the quantitative results for all methods. DSQNet+ achieves

the highest shape recognition performance (volumetric IoU), particularly for the dumb-

bell and bottle objects. In conclusion, by modifying the input representation to more

effectively utilize the segmentation results, we have achieved a significant improvement

in shape recognition performance.

3.6.3 Shape Uncertainty Aware Grasping Algorithm

We have developed a shape uncertainty-aware grasping algorithm to aid grasp pose plan-

ning and to increase grasp performance in more difficult cases. Although DSQNet shows

the best recognition performance on both synthetic and real-world objects, clearly shape

recognition cannot always be perfect, i.e., the volumetric IoU cannot always achieve a

perfect score of 1. If the generated grasp pose points to an erroneous part of the recog-

nized shape, the gripper may fail to grasp the object. To limit the possibility of grasping

56 DSQNet: Deformable Superquadric Network

Table 3.5: IoU comparison between SQNet, DSQNet, and DSQNet+ for object dataset

OBJECT SQNet DSQNet DSQNet+

Hammer .8266 .8143 .8359

Mug .7497 .7976 .8474

Screwdriver .8354 .8310 .8033

Padlock .7673 .7848 .8090

Dumbbell .7583 .7196 .8764

Bottle .7758 .7887 .8324

Average .7855 .7893 .8324

erroneous parts, we introduce a new grasp score that considers shape uncertainty.

We first define an uncertainty score of a point on the recognized shape surface. The

uncertainty score at a point is defined to be higher when the point is farther from the

actual observation. To calculate the uncertainty score at a given point, we calculate the

nearest distance from the point to the partially observed point cloud. Then, the uncer-

tainty scores are defined by linearly rescaling these distances so that the surface points

nearest and farthest to the partially observed point cloud have scores of 0 and 1, re-

spectively. The uncertainty score of the antipodal point u is then defined as the mean

of the uncertainty scores of the corresponding points. Finally, we define a new grasp

score c as the weighted sum of the original grasp score and the uncertainty score u,

i.e., c = −zT zt − βu, where the weighting parameter β is set to 5. Two grasping ex-

periments based on Algorithm 1, one with and one without this uncertainty score term,

have been conducted on five objects with low grasping success rates (Table 3.4). Twenty

trials are conducted for each object, with the object’s pose fixed at each trial in both

experiments to achieve a fair comparison.

3.6. Additional Experimental Results 57

Table 3.6: Grasping results with and without uncertainty score

METHOD Jello Hammer Mug Bottle Dumbbell

DSQNet 18/20 18/20 17/20 17/20 15/20

DSQNet + Unc. 18/20 18/20 18/20 18/20 17/20

Figure 3.14 shows the recognition results and grasp poses generated with and with-

out the uncertainty score for several real-world objects. We distinguish between the re-

sults with and without the uncertainty score by “DSQNet + Unc.” or “DSQNet”. In the

results of the uncertainty-aware case, the color of the object mesh indicates the uncer-

tainty score, e.g., the score is 0 for blue and 1 for red. When grasping the jello, the

gripper attempts to grasp the observed part of the recognized object when the uncer-

tainty is taken into account. In this case, both grasp poses are successful in grasping

since shape recognition is almost perfect. There remain a few grasping failure cases

when the existing algorithm generates grasp poses for mugs and dumbbells, as a result

of the gripper attempting to grasp the erroneous part of the recognized shape. By con-

sidering uncertainty in Algorithm 1, we verify that some of these cases can be prevented

as seen from Figure 3.14.

The grasping performance results with and without the uncertainty score are shown

in Table 3.6. There is no performance difference between the two algorithms for the

jello and hammer cases, but the performance of the former is higher in other objects.

In particular, the performance improvement is most noticeable for dumbbells, which

have many erroneous parts in the recognized shapes. Grasping performance has been

improved by introducing the uncertainty score into the current algorithm, particularly

for cases when shape recognition is not perfect.

58 DSQNet: Deformable Superquadric Network

Figure 3.14: Recognition and grasp pose generation results with and without uncertainty

score for real-world objects.

3.6. Additional Experimental Results 59

Figure 3.15: Examples of human-robot collaboration in scenarios involving the grasping

of a Cheez-It box.

3.6.4 Real-time Application of DSQNet for Human-Robot Collabora-

tion

We have also used our DSQNet in scenarios where human and robot collaboration is

essential. Fast (or real-time) inference speed is crucial for effective human-robot collab-

oration, and our DSQNet boasts a very fast inference speed. Leveraging these advan-

tages, we have conducted a grasping experiment based on the following scenario: The

robot needs to grasp a Cheez-It box, but the object is too flat and large to be grasped

directly. With human assistance, the robot attempts to grasp the Cheez-It box.

Figure 3.15 shows some examples of human-robot collaboration in the scenarios de-

scribed above. Initially, the Cheez-It box is not graspable, so the robot cannot identify

an appropriate grasp pose. In such instances, a human aids by either pushing the object

toward the edge of the table or lifting it into the air, enabling the robot to grasp the

object. The robot, using our DSQNet, recognizes the moving object in real-time and

assesses its graspability through our grasp pose generation algorithm. When the object

60 DSQNet: Deformable Superquadric Network

becomes graspable and its pose stabilizes (i.e., the variation in the center of the rec-

ognized object diminishes), the robot initiates grasp planning. Consequently, the robot

successfully grasps the Cheez-It box with the aid of a human.

3.7 Beyond Superellipsoids: Adopting Superparaboloids

for Tableware Objects

As we describe in Chapter 2, we use the term “superquadrics” to exclusively refer to

superellipsoids, except for this subsection. In household environments, a wider variety

of unknown objects can be present, such as bowls, dishes, and spoons as shown in

Figure 3.16. In particular, it is difficult to express the concave objects such as bowls

using only superellipsoid primitives. In this subsection, our goal is to a skill that can

grasp various tableware objects on the table adopting new shape primitives named su-

perparaboloids.

3.7.1 Unified Superquadric Network

We describe the Unified Superquadric Network (USQNet), a deep neural network that

takes a partially observed point cloud P = {xi ∈ R
3}Ni=1 as input like DSQNet, and

outputs the superellipsoid or superparaboloid primitive that best represents the full ob-

ject shape. To define a unified superquadric shape primitive including superellipsoid

and superparaboloid, we use the two implicit functions separately with different no-

tations. Let the implicit equation for a superellipsoid surface 2.2.1 and for a super-

paraboloid surface 2.2.7 be fse and fsp, respectively. Then, in addition to the parame-

ters (a1, a2, a3, e1, e2), we define a class parameter c ∈ {0, 1} which determines whether

the shape is superellipsoid or superparaboloid, in detail, superparaboloid when c = 1

3.7. Beyond Superellipsoids: Adopting Superparaboloids for Tableware Objects 61

Figure 3.16: Several examples of tableware objects.

and superellipsoid when c = 0; the shape parameter vector consists of 6 parameters

q = (a1, a2, a3, e1, e2, c) ∈ R
6. Using this notation, the implicit surface of the unified

primitive f(x, y, z) = 1 is expressed by:

f(x, y, z) = c · fsp(x, y, z) + (1− c) · fse(x, y, z) = 1. (3.7.9)

The basic structure of USQNet is almost similar to DSQNet except for the classi-

fier that classifies the superellipsoid and superparaboloid, and the overall architecture is

shown in Figure 3.17. The network consists of (i) the EdgeConv layers [72] with la-

tent space dimension (64, 64, 128, 256) and max pooling operator to produce a global

feature vector from P in a permutation-invariant manner and (ii) five fully-connected

layers (MLP) with latent space dimension (512, 256) (with LeakyRelu nonlinearities) to

obtain the superquadric parameter {a1, a2, a3, e1, e2, c} and the pose T = [R; t] from

the extracted global feature. Especially, each MLP outputs (i) translation vector t ∈ R
3,

(ii) quaternion vector r ∈ S
3 representing the rotation matrix R ∈ SO(3), (iii) size

parameters a = (a1, a2, a3) ∈ R
3, (iv) shape parameters e = (e1, e2) ∈ R

2, and (v) su-

perellipsoid/superparaboloid class parameter c ∈ [0, 1]; the values e1 and e2 are bounded

in [0.2, 1.7] since the superquadric equation diverges when e1 and e2 goes to zero and

shows too complex shapes when e1 and e2 become large.

62 DSQNet: Deformable Superquadric Network

Figure 3.17: Superquadric recognition network.

3.7.2 Loss Function for Training

For the predicted superquadric to fit well with the ground-truth shape, the loss function

should also be designed to be the difference between the prediction and the ground-

truth object shapes. For ground-truth shape, we obtain five kinds of ground-truth labels:

(i) ground-truth point cloud of the object, uniformly sampled points from the surface

of the object, denoted by Pg = {xg,i ∈ R
3}ng

i=1, where ng = 512, (ii) ground-truth

surface normals of the object Ng = {ng,i ∈ S
2}ng

i=1 obtained from the surface mesh of

the object, (iii) ground-truth shape class of the object cg, (iv) ground-truth height of

the object hg, and (v) ground-truth z-axis of the object zg.

Superparaboloid loss Lsp. The loss consists of three terms: surface fitting loss,

height loss, and z-axis loss. The surface fitting loss fits a given ground-truth point cloud

to the superparaboloid surface, and since superparaboloid is an infinite surface, addi-

tional loss named height loss is required to restrict the object shapes’ heights. Also,

the objects are placed on a table in general cases, so z-axis loss is also added to make

3.7. Beyond Superellipsoids: Adopting Superparaboloids for Tableware Objects 63

training easier. Therefore, the final superparaboloid loss is as follows:

Lsp =
1

ng

ng∑
j=1

f2
sp(T

−1xg,j)

︸ ︷︷ ︸
Surface fitting loss

+wh(a3 − hg)
2

︸ ︷︷ ︸
Height loss

+wz(1− zT zg)
2

︸ ︷︷ ︸
z-axis loss

, (3.7.10)

where the hyperparameters are wh = 10 and wz = 1, fsp is defined by the parameters

{a1, a2, a3, e1, e2}, and T is its pose.

Superellipsoid loss Lse. The loss consists of three terms: surface fitting loss, surface

normal loss, and z-axis loss. For surface fitting loss, we use the distances from the

ground-truth point cloud to the predicted superquadric as the loss function. The distance

form is from [84] which is defined as follows. Then, the distance δ between a point

x0 ∈ R
3 and a superellipsoid surface fse(x) = 1 is

δ(x0, fse) = ||x0||
∣∣∣∣1− f

− e1
2

se (x0)

∣∣∣∣ , (3.7.11)

where ‖ · ‖ denotes the Euclidean norm. Additionally, the surface normal loss, differ-

ence between the ground-truth normal vector ng,j and predicted normal vector nj =

∇xfse(xj), is added to better abstract the objects (e.g., fork, knife, spoon) suitable for

grasping, and a z-axis loss is also added for similar reasons described as above. Ac-

cordingly, the loss function is defined as:

Lse =
1

ng

ng∑
j=1

δ2(T−1xg,j , fse)

︸ ︷︷ ︸
Surface fitting loss

+
wn

ng

ng∑
j=1

(1− nT
j ng,j)

2

︸ ︷︷ ︸
Surface normal loss

+wz(1− zT zg)
2

︸ ︷︷ ︸
z-axis loss

, (3.7.12)

where the hyperparameters are wn = 0.1 and wz = 1. fse is also defined by the pa-

rameters {a1, a2, a3, e1, e2}, and T is its pose.

Classification loss Lc. This is a classical binary classification loss as follows:

Lc = −(cg log c+ (1− cg) log(1− c)) (3.7.13)

64 DSQNet: Deformable Superquadric Network

In conclusion, the total loss function used for training USQNet is as follows:

L = Lc + cgLsp + (1− cg)Lse (3.7.14)

3.7.3 Recognition and Grasping on Real-world Tableware Objects

We assume that multiple objects are placed on a table but they are not highly over-

lapped, and we focus on representing each object as a single shape primitive. In this

case, we use a classical method named DBSCAN clustering algorithm as a point cloud

segmentation algorithm [91]. DBSCAN is a density-based clustering method that groups

each local point cloud cluster. We first perform the point cloud segmentation and then

up/downsample the point cloud to match the total number of the points to be 2048. The

examples for the results of superquadric shape recognition are shown in Figure 3.18.

When a superquadric representation of the target object is obtained from shape and

pose recognition, we can generate candidate grasp poses. In this subsection, we use sim-

ple heuristic-based method for grasp pose generation. We use different candidate grasp

pose generation strategies for these two shape classes. For superparaboloid shapes, we

generate 10 side grasp poses according to the parameters (i.e., size parameters a1, a2, a3

and shape parameters e1, e2) as shown in Figure 3.19. At this time, the two gripper

fingers should be on the antipodal points on the object. For superquadric shapes, we

generate 10 top-down grasp poses; in this case, grasp poses with a distance between

the antipodal points greater than 7cm are removed from the candidates (the maximum

gripper width of the Franka gripper is 8cm).

After generating candidate grasp poses, we can easily check the graspability of the

objects. Figure 3.20 shows how to check graspability of each object. After generating

candidate pre-defined grasp poses for each object, we check the graspability by checking

collision between the pre-defined grasp poses and the table or surrounding objects. The

3.7. Beyond Superellipsoids: Adopting Superparaboloids for Tableware Objects 65

Figure 3.18: The representative examples of the superquadric shape recognition results.

66 DSQNet: Deformable Superquadric Network

Figure 3.19: Generated candidate grasp poses for various recognized superparaboloid

shapes.

Figure 3.20: Graspability description. The yellow bowl is graspable (upper row) and the

red dish is non-graspable (lower row)

3.8. Conclusion 67

green grippers are collision-free grasp poses and the red ones are collide grasp poses.

For the yellow bowl, there is at least one of the collision-free grasp poses so the bowl

is graspable. Otherwise, there is no collision-free poses of the red dish, so the dish is

non-graspable. The collision between the grippers and the environment can be checked

in real-time by using (i) object implicit function equation and (ii) batch-wise parallel

computing based on PyTorch.

Collision checking method. We first sample the points on the gripper mesh; the

sampled points are denoted by Pgr = {xgr,j ∈ R3}ngr

j=1, where ngr = 2048. For an

implicit object representation f(x) = 1, we note that a point x0 ∈ R
3 is inside the

object when f(x0) is less than 1 and outside when S(x0) is greater than 1. We use

this fact to determine whether the gripper collides with the objects or tables or not:

when the value

min
j

S(T−1
gr xgr,j), (3.7.15)

where Tgr is the pose of the gripper, is less than 1, then the gripper collides with

the object. Through this, collision can be checked quickly and efficiently. The grasping

results for the real-world tableware objects are shown in Figure 3.21.

3.8 Conclusion

This paper has presented a novel recognition-based grasping method using the Defor-

mable Superquadric Network (DSQNet). Our methods adopt deformable superquadrics

primitives that are both expressive and computationally simple. Unlike existing opt-

imization based methods, DSQNet uses a supervised learning framework with ground-

truth shape labels to find the full shapes of objects (including occluded parts) from

partially observed point clouds. An antipodal points sampling-based grasping strategy

from the recognized shape is designed that exploits the advantages of the deformable

68 DSQNet: Deformable Superquadric Network

F
ig

u
re

3
.2

1
:

G
rasp

in
g

resu
lts

fo
r

real-w
o
rld

tab
lew

are
o
b
jects.

3.8. Conclusion 69

superquadric primitives.

We have verified our recognition-based method with recognition tasks on a syn-

thetic dataset, and grasping tasks on real-world objects. The experimental results con-

firm that DSQNet can recognize shapes of objects accurately and quickly compared to

existing baseline methods. Whereas optimization-based methods cannot predict shapes

corresponding to occluded parts of the objects, our supervised learning framework suc-

cessfully determines full shapes in many cases. Our recognition-based grasping method

achieves a success rate of 93% for real-world grasping tasks, which is superior to rates

achieved for existing recognition-based grasping methods.

Limitations and Future Directions Although our method shows high recognition

performance on most of the household objects, recognition performance for more diverse

and complex objects can be greatly enhanced by the incorporation of publically avail-

able large scale 3-D datasets such as ShapeNet [92]. Since our current method requires

difficult-to-obtain primitive shaped point segmentation labels, using public datasets can

be a challenge. Possible directions for future work include designing a network that in-

corporates both the segmentation network and DSQNet, that simultaneously optimizes

point cloud segmentation and fitting without segmentation supervision.

Despite the expressiveness of deformable superquadrics, there remain shapes that are

difficult or impossible to model. For example, concave shapes such as bowls present a

challenge. Among the superquadric sets, we use only superellipsoids, but there exist

other possible choices, e.g., superhyperboloids and supertoroids. In particular, the su-

pertoroids can express a variety of shapes with cavities, from the torus to the cylinder

shell; with an appropriate deformation model, more varied objects such as bowls can

now be represented. The extension of our work using more diverse superquadric prim-

itives remains a topic for future work.

70 DSQNet: Deformable Superquadric Network

4
SQPDNet: Superquadric Pushing

Dynamics Network

4.1 Introduction

Robotic visual pushing manipulation – by visual manipulation, we mean that only vi-

sual observations (e.g., depth camera) are available – in cluttered environments includ-

ing unseen objects is an important yet challenging manipulation skill that allows a robot

to interact with and change its environment to be suitable for performing downstream

tasks. For example, pushing manipulation techniques have been used to move table-

top objects graspable [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], rearrange multiple

objects [28, 29, 30, 31], sort objects according to specific rules [32, 33], and find a

target object occluded by the other objects [93, 94]. We refer to the survey paper for

comprehensive reviews for the non-prehensile pushing manipulation methods [95].

We consider model-based approaches for the pushing manipulation that consist of

71

72 SQPDNet: Superquadric Pushing Dynamics Network

Figure 4.1: The box object and pushing vector in Scene 1 are transformed by some same

planar rigid-body transformation as those in Scene 2. An ideal pushing dynamics model

should be SE(2)-equivariant, i.e., the resulting motion in Scene 2 is a transformation of

that in Scene 1.

the following two components: (i) to construct a pushing dynamics model which pre-

dicts the motions of the objects after a robot performs a pushing action to the envi-

ronment and (ii) to find an optimal sequence of pushing actions that achieves the goal

given a predesigned task criteria [96, 97]. Our primary focus is the first step which is

to develop an accurate visual pushing dynamics model that takes a visual observation as

an input. Analytic approaches that precisely model the physical interactions [3, 4, 5, 6]

cannot be used since we are given unseen objects with only vision data.

Recently, there has been considerable interest in data-driven methods for learning

pushing dynamics models [34, 35, 36, 37, 38, 39, 40, 41, 42, 43], but their generaliza-

tion performances are still far-less-than-satisfying. We claim that one of the important

reasons behind this is that neural network models used in existing approaches lack con-

sidering the symmetry of the physical systems, and more precisely, equivariance. For

example, suppose a model is trained with an experience where a robot pushes a box

object into a red arrow direction as shown in Figure 4.1 (Scene 1). And consider a

4.1. Introduction 73

new situation where the same box object is located at a different pose and the robot

pushes the object in the same relative direction as shown in Figure 4.1 (Scene 2). At

an intuitive level, a good model should be able to easily generalize to this type of

new situation, where tabletop objects are only translated or rotated along the z-axis.

In more technical terms, the pushing dynamics model needs to be equivariant to the

SE(2) transformation.

In this paper, we define the SE(2)-equivariant pushing dynamics model and delib-

erately design a neural network architecture that by construction has the equivariance

property. The core idea to make the model equivariant is to properly transform the coor-

dinates of the pushing action and the objects’ poses as needed; details are elaborated in

Chapter 4.3. This construction naturally captures the symmetry of the physical systems

and significantly improves the generalization performances.

To employ the proposed equivariant pushing dynamics model in environments with

only vision data and unseen objects, we need an additional module that can recognize

the objects’ shapes and poses. In this work, we represent 3d objects’ shapes by us-

ing the shape class called the superquadrics, which can express diverse shapes ranging

from boxes, cylinders, and ellipsoids to other complex symmetric shapes. We train the

recognition network that predicts the objects’ shapes with superquadrics by adopting an

idea from [64]. We call our superquadric object representation-based pushing dynamics

model a SuperQuadric Pushing Dynamics Network (SQPD-Net).

Experiments and benchmark comparisons against the existing state-of-the-art meth-

ods confirm that our dynamics model achieves the highest performance in predicting

objects’ motions after pushing action. In addition, we validate the effectiveness of our

model by using it for model-based optimal controls for various pushing manipulation

tasks in both simulation and real-world experiments.

74 SQPDNet: Superquadric Pushing Dynamics Network

4.2 Related Works

4.2.1 Model-free Pushing Manipulation

In model-free pushing manipulation methods, a policy that directly maps a visual obser-

vation to a sequence of pushing actions is learned without learning a pushing dynamics

model. They typically require to design a task-specific reward function and train the pol-

icy in an end-to-end manner with a large amount of data. Researchers have attempted to

solve diverse tasks with these methods such as grasping [17, 18, 19, 20, 21, 22, 23], sin-

gulation [24, 25, 26, 27], object rearrangement [28, 29, 30, 31], object sorting [32, 33],

and invisible target object finding [93, 94]. We refer to the survey paper for comprehen-

sive reviews for the end-to-end pushing methods [95]. Model-free methods are known

to have very good convergence performance, but they require a lot of data. Also, when

a new task is given, the agent must be trained from scratch. On the other hand, in

model-based approaches, the learned model is reusable given a new task, and much

less additional data is needed.

4.2.2 Visual Pushing Dynamics Learning

A few studies have proposed data-driven visual pushing dynamics models using trained

deep neural network models. These deep neural networks input a visual observation and

a pushing action (or action sequences) and predict the motions of the objects after a

robot performs a pushing action to the environment.

Learning dynamics from pixels. Early works leveraged direct visual observations

to learn dynamics in pixel space in a data-driven manner. One of the most naive ap-

proaches is to use a basic convolution network to predict (optical) flow in image space,

but [34] find these models to have very poor performance. [34] and [35] have modeled

object motions in pixel space using several rigid body transformations, as opposed to

4.2. Related Works 75

predicting pixel-wise flow from observations. These methods have demonstrated impres-

sive results in manipulation tasks, including closed-loop planar pushing. However, they

encounter difficulties in accurately predicting outcomes when complex interactions be-

tween objects occur. More recent works develop object-centric pushing dynamics models

by representing each object by a visual feature [36, 37, 38, 39, 41], or a segmented im-

age using a pre-trained segmentation network [42]. However, these works often predict

inaccurate or incomplete object motions as they rely on only partial observations of the

objects.

Self-supervised learning using implicit object shapes. Recently, self-supervised

learning techniques that use only visual observation but do not rely on data collec-

tion have been developed. [98] and [99] have parametrized object shapes using implicit

signed distance functions and optimized the parameters through a differentiable physics-

based simulator to determine accurate dynamics. Additionally, [100] have expanded this

approach by incorporating tactile sensor data alongside vision sensor data to determine

the dynamics of deformable objects. [43] employs a vision transformer architecture to

enhance the performance of pushing dynamics prediction. Further, [101] utilizes compo-

sitional neural radiance fields and graph neural networks to learn multi-object dynamics

from RGB image observations.

Object dynamics learning with 3D amodal geometry. A recent study addresses

the limitations of previous methods by inferring the amodal 3D geometry of each ob-

ject, including unobserved regions, within a 3D voxel space. This approach, detailed in

[40], leverages the complete 3D geometry to predict the rigid body motion of the entire

object, rather than just the visible surfaces, thereby increasing accuracy and resolving

the incompleteness inherent in earlier methods.

Our work is also in the spirit of [40] in utilizing the ground-truth information of the

objects to increase the accuracy of the prediction. Still, we use implicit representation

76 SQPDNet: Superquadric Pushing Dynamics Network

for the objects to utilize them for efficient motion prediction and various manipulation.

4.2.3 Shape Recognition from Visual Observation

Many works have been proposed to recognize the full 3D shapes from partial obser-

vations such as depth images. Some of them use explicit representation such as occu-

pancy grid [51], point cloud [52], or mesh [53]. Since they often lead to shape predic-

tion not being precise enough due to limited resolutions of the representations, recent

works have explored learning implicit 3D representations for the objects using neural

implicit functions [55, 56, 57, 58]. In this paper, we adopt superquadric functions that

balance the expressiveness of the shapes and efficiency of the computational with a

small number of parameters [61]. They have been used for robotic manipulation such

as grasping [49, 75, 76, 64, 50]. We note in our paper that we represent each object

as a single superquadric function, but our work can be easily extended to general im-

plicit representations, especially deformable superquadric [63, 64] or a set of superqua-

drics [102, 103, 104, 105].

4.2.4 Invariance and Equivariance in Robot Learning

Recently, invariance and equivariance properties turn out to be very important inductive

biases for deep learning models to generalize well and be trained data efficiently [106].

Convolutional neural networks (CNNs) have translation equivariance properties, which

are particularly suitable for image recognition tasks [107]. Graph neural networks, point

cloud neural networks, and set neural networks have the permutation invariant proper-

ties [108, 109, 110]. More advanced equivariance properties such as rotational equivari-

ance for image data and SO(3)-equivariance for spherical image data have been achieved

by group equivariant CNNs [111, 112, 113]. In the context of robot manipulation, recent

4.3. SE(2)-Equivariant Pushing Dynamics Models 77

works have adopted these equivariance principles and shown significantly improved sam-

ple efficiency and performance. Some of them use group invariant Q function to achieve

the group equivariant reinforcement learning [114, 115, 116, 117, 118] or use SE(3)-

equivariant object representation for object manipulation tasks [119, 120, 121, 122]. Our

work differs from other works in that we learn equivariant dynamics model for robot

pushing manipulation, and it is novel in that the SE(2)-equivariant dynamics model,

which is a suitable inductive bias for pushing dynamics, is formulated. Similar to our

approach, there is an approach that performs input transformations to achieve the equiv-

ariance [123], but the model is equivariant for only a few rotations and scales; our

model is intrinsically equivariant to the continuous SE(2) transformations.

4.3 SE(2)-Equivariant Pushing Dynamics Models

In this section, we develop a neural network architecture specialized to learn a SE(2)-

equivariant pushing dynamics model. We assume that multiple rigid-body objects are

placed on the table whose surface is assumed to be flat and orthogonal to the gravity

direction, and the robot interacts with the objects by pushing manipulation. Each object

is represented by a pose parameter T ∈ SE(3) (4× 4 matrix representation) and shape

parameter q, where the pose parameter is described with respect to some global fixed

frame and the shape parameter is a vector. And the pushing action is defined as a tuple

(p,v) where the tip of the end-effector moves from the position p ∈ R
3 to p+ v ∈ R

3.

As the tip of the end-effector moves, the robot can have contact with environments,

pushes objects, and changes the poses of the objects.

Further, we assume there are maximally M rigid-body objects on the table that

have the parameters {(Ti,qi)}Ni=1 for N ≤ M . We consider a discrete-time pushing

dynamics model f that outputs the object’s transformed poses {T′
i}Ni=1 when a pushing

78 SQPDNet: Superquadric Pushing Dynamics Network

action (p,v) is applied, i.e., {T′
i}Ni=1 = f({(Ti,qi)}Ni=1, (p,v)), where N can vary as

long as N ≤ M . Assuming the gravity direction is the z-axis, we first give a precise

definition of the SE(2)-equivariant pushing dynamics model:

Definition 4.1. A pushing dynamics model f is SE(2)-equivariant if

{CT′
i}Ni=1 = f({(CTi,qi)}Ni=1, (Rot(ẑ, θ)p+ txy,Rot(ẑ, θ)v)) (4.3.1)

for all object numbers N ≤ M and rigid-body transformations C that have the following

form

C =

⎡
⎣Rot(ẑ, θ) txy

0 1

⎤
⎦ , (4.3.2)

where Rot(ẑ, θ) is a 3 × 3 rotation matrix for rotations around z-axis and txy =

(tx, ty, 0) ∈ R
3.

To build a SE(2)-equivariant neural network architecture, we first introduce an ob-

ject pose decomposition method that decomposes an object pose Ti ∈ SE(3) to a pose

projected to the table surface denoted by Ci ∈ SE(3) and the relative rigid-body trans-

formation Ui ∈ SE(3) such that Ti = CiUi.

Object Pose Decomposition. Given an object pose T ∈ SE(3), we decompose it

to two 4× 4 matrices C,U ∈ SE(3) as visualized in Figure 4.2. First, C is defined by

projecting T to the table surface, which has the form in equation (4.3.2). And secondly,

U is defined as C−1T. More details are in Appendix B.1.1.

Now, we explain our network architecture for the pushing dynamics model f ; over-

all architecture is described in Figure 4.3. The model f is defined as {fi}Ni=1 where

each fi outputs the i-th object’s transformed pose, i.e., T′
i = fi({(Tj ,qj)}Nj=1, (p,v)).

For fi, we first decompose the i-th object pose Ti = CiUi and transform the other

objects’ poses (including itself) and pushing action as follows: (i) Tj �→ C−1
i Tj for

4.3. SE(2)-Equivariant Pushing Dynamics Models 79

Figure 4.2: Object Pose Decomposition.

Figure 4.3: SE(2)-equivariant pushing dynamics neural network architecture for an i-th

object, fi.

80 SQPDNet: Superquadric Pushing Dynamics Network

j = 1, · · · , N and (ii) (p,v) �→ C−1
i (p,v) := (RT

i p − RT
i ti,R

T
i v) where Ri and

ti are rotation matrix and translation vector parts of Ci. Then, three different multi-

layer perceptron (MLP) networks are used to extract SE(2)-invariant feature vectors:

(i) the MLP1 takes the transformed action C−1
i (p,v) and outputs a feature vector ai,

(ii) the MLP2 takes the i-th object’s parameter (Ui,qi) and outputs a feature vector bi,

and (iii) the MLP3 takes the transformed object’s parameters (C−1
i Tj ,qj) and outputs

a feature vector cji for all j = 1, · · · , N and then these output vectors pass through

some permutation invariant function h as ci = h(c1i , · · · , cNi) such as the element-wise

max pooling. These feature vectors are concatenated as yi = (ai,bi, ci), and we have

the last layer MLP4 that takes yi and outputs δTi ∈ SE(3). We note that these MLP

layers are shared across all i = 1, · · · , N . Then, the transformed poses are defined as

T′
i = TiδTi for all i = 1, · · · , N . As a result, this dynamics model is SE(2)-equivariant

by construction; the proof is in Appendix B.1.2.

Training. Denote by s = {(Ti,qi)}Ni=1 for some N ≤ M and a = (p,v). In this

paper, we train the pushing dynamics model given a set of tuples {(s, a, {T′
i}Ni=1)k}Kk=1

where T′
i is the next pose of the i-th object. The loss function L is defined by com-

paring the ground-truth next poses {T′
i}Ni=1 and the predicted poses {T̂′

i}Ni=1 = f(s, a)

as follows:

L(f) =
N∑
i=1

(
‖t′i − t̂′i‖22 + α · d2SO(3)(I3,R

′−1
i R̂′

i)
)
, (4.3.3)

where dSO(3) is a distance measure between two rotation matrices, I3 is 3× 3 identity

matrix, R′
i, R̂

′
i and t′i, t̂

′
i are rotation matrices and translation vectors parts of T′

i, T̂
′
i,

respectively, and α is a weighting parameter (for our later experiments we set α to 0.1).

The details about the used distance measure are in Appendix B.3.

4.4. Object Recognition-based Pushing Manipulation 81

4.4 Object Recognition-based Pushing Manipulation

If we have known objects and can easily estimate the poses of the objects, then it is

straightforward to use the learned pushing dynamics model for pushing manipulation.

However, for unseen objects, we first need to recognize the objects’ shapes and poses.

Therefore, our overall framework consists of the following two steps: (i) to recognize

objects’ shapes and poses and (ii) to push objects by using the learned pushing dynamics

model and pre-designed task criteria, of which details are explained in the following

subsections.

4.4.1 Object Shape and Pose Recognition via Superquadrics

We propose to use implicit functions to represent 3d objects’ shapes. In general, an im-

plicit object surface representation is defined by a level set of a function S(x, y, z;q,T)

= 0, where q is a shape parameter and T ∈ SE(3) is a pose parameter. In our frame-

work, any implicit function approximation model S(x, y, z;q,T) can be used.

In this work, we employ the shape class called the superquadrics, a family of geo-

metric shapes that resemble ellipsoids and other quadrics, which can be used to repre-

sent diverse shapes ranging from boxes, cylinders, and ellipsoids to bi-cones, octahedra,

and other complex symmetric shapes. The implicit equation for a superquadric surface

at T = I4 (I4 is 4× 4 identity matrix) has the following form:

S(x, y, z;q, I4) =

(∣∣∣∣ xa1
∣∣∣∣

2
e2

+

∣∣∣∣ ya2
∣∣∣∣

2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣

2
e1 − 1 = 0, (4.4.4)

where q = (a1, a2, a3, e1, e2) ∈ R
5 is the shape parameter. In particular, a1, a2, a3 con-

trols the sizes and e1, e2 controls the geometric shapes. Some examples are shown in

Figure 2.1. At T �= I4, the equation S(x, y, z;q,T) can be written with the passive co-

ordinate transformation of (x, y, z) by T, i.e., S(x, y, z;q,T) = S(T−1(x, y, z);q, I4);

82 SQPDNet: Superquadric Pushing Dynamics Network

see Appendix B.2 for details.

The object recognition problem that we address in this paper can then be posed

as follows: given a visual input obtained from a depth camera that typically contains

partial views of the objects, we need to predict the superquadric parameters (q,T) for

each object. To bridge the gap between synthetic and real-world vision sensor data, we

add noise to the visual input as done in [124, 125]. The predicted object represented

by (q,T) should fit the full object, although only a partial view of the object is given

as input. This problem has been recently tackled by [64], where two neural network

models that take point cloud data as inputs are employed: (i) object segmentation net-

work [72] and (ii) object full shape and pose recognition network [64]. We include

details about the visual input noise, the network architectures, and the training methods

of these networks in Appendix B.2.

We call our SE(2)-equivariant pushing dynamics model that uses the superquadric

representation a SuperQuadric Pushing Dynamics Network (SQPD-Net).

4.4.2 Model-based Pushing Manipulation

Given a visual observation of tabletop objects as a point cloud which we denote by o,

our goal is to find a sequence of robot pushing actions (a1,a2, · · · ,aT) that changes

the environment for some given task. In this section, we assume that we are given (i)

a recognition module R that outputs the objects’ poses and shapes, i.e. R(ot) = st

(throughout, we denote by st = {(Tt,i,qt,i)}Ni=1), and (ii) a pushing dynamics model

st+1 = f(st,at). Given a task-specific objective function J , we solve the following

optimal control problem:

min
a1,··· ,aT

J (o1,a1, · · · , aT) =
T∑
t=1

r(st,at)+ q(sT+1) s.t. s1 = R(o1), st+1 = f(st,at).

(4.4.5)

4.4. Object Recognition-based Pushing Manipulation 83

Figure 4.4: Sampling-based grasping criteria.

For tasks we focus in this paper, we set r(st,at) = 0 and only use a terminal cost

function q(sT+1). We use the sampling-based MPCs [97] (implementation details are

in Appendix B.4). Below, we introduce three terminal cost functions for the follow-

ing pushing manipulation tasks: (i) moving, (ii) singulation, and (iii) grasping. We de-

note the translation vector and rotation matrix parts of the transformation matrix T(·)

as t(·),R(·), respectively.

Moving is a task to move objects to their desired poses. The desired poses are given

as {Td,i}Ni=1, then we define a terminal cost function as

q(sT+1) =
N∑
i=1

(
‖tT+1,i − td,i‖22 + β · dSO(3)(I3,R

−1
d,iRT+1,i)

)
. (4.4.6)

Singulation is a task to separate objects by more than a certain distance τ . We

define a terminal cost function as

q(sT+1) = − min
{(i,j)∈{1,··· ,N}|i>j}

(
min(‖tT+1,i − tT+1,j‖ − τ, 0)

)
. (4.4.7)

Grasping is a task to make a target object graspable. Given a target object index

i, we generate candidate grasp poses for the recognized target object as shown in Fig-

ure 4.4 and check collisions with the environment and the other recognized objects;

84 SQPDNet: Superquadric Pushing Dynamics Network

green grasp poses are collision-free and red poses are not. The terminal cost q(sT+1)

is defined to be 0 if at least one collision-free grasp pose exists and 1 otherwise. Further

details are provided in Appendix B.5.

4.5 Pushing Manipulation Dataset

To train pushing dynamics models, we generate a pushing manipulation dataset in sim-

ulation environment (Pybullet). We use the 7-dof Franka Emika Panda robot with a

parallel-jaw gripper and an Azure Kinect DK camera sensor mounted on the gripper.

The raw input visual observation is a depth image, which is then pre-processed to other

3d representations (e.g., point cloud) as needed.

We generate the pushing manipulation dataset as follows: (i) we place random ob-

jects at random poses in the workspace, (ii) sample an action, and (iii) execute the robot

pushing action. In this process, we note that the gripper’s other parts than the tip can

also make contact with the environment.

Object configuration. The objects consist of cubes and cylinders with various shape

parameters (i.e., width, height, depth for the cube, and radius, and height for the cylin-

der). The shape parameters are randomly generated, and 18 different objects are gener-

ated for each box and cylinder as shown in Figure 4.5. Then, the objects are divided into

9/9 known and unknown sets per shape class. The known objects are used for training

the pushing dynamics models, and the unknown objects are used for the performance

evaluation of the trained models. For data generation, these objects are dropped on the

workspace of 0.512m × 0.512m × 0.192m.

Pushing Action. To execute an action (p,v) ∈ R
6, (i) the robot first moves so that

the gripper’s tip is placed at p and its orientation is set as visualized in Figure 4.6, and

then (ii) the robot moves in a way that the gripper’s tip moves to p+ v with a fixed

4.5. Pushing Manipulation Dataset 85

Figure 4.5: Known (red) and unknown (blue) object shapes used for data generation.

orientation.

Action sampler. To sample an action (p,v) ∈ R
6, we first randomly choose an

object to push and randomly choose the pushing direction among pre-defined 8 angles

divided equally between 0 to 2π towards the center of the object pose. The vector

v ∈ R
3 is then defined from the pushing direction vector. To determine the pushing start

point p ∈ R
3, the height of the pushing point is randomly chosen within the candidate

heights which belong to 5 pre-defined heights divided equally by the workspace height

(i.e., 0.192m) and less than the object’s height. The starting point in the x-y plane is

also chosen within the 4 candidates on the pushing line as shown in Figure 4.7. For

each object, a maximum of 160 action candidates can be generated. For each action,

the trajectory of the robot pushing motion is divided into 10 via points and the end

effector of the robot reaches the via points sequentially and slowly, making the object

as quasi-static as possible.

86 SQPDNet: Superquadric Pushing Dynamics Network

Figure 4.6: Execution of a pushing action.

Figure 4.7: Pushing action sampling method for a chosen object.

4.6. Experimental Results 87

4.6 Experimental Results

In this section, we empirically show that (i) our proposed pushing dynamics model, the

SQPD-Net, outperforms the existing state-of-the-art data-driven pushing dynamics mod-

els, and (ii) our SQPD-Net can be used for various downstream pushing manipulation

tasks, e.g., object moving, singulation, and grasping.

Shape alignment. Since we use symmetric shapes for the object sets, various solu-

tions can appear with the different poses of objects when recognition is performed. We

introduce a processing technique that standardizes the recognized object shapes in terms

of their poses to reduce the complexity of data statistics and accelerate the training of

the SQPD-Net.

We recall the superquadric equation for convenience of explanation:

S(x, y, z;q, I4) =

(∣∣∣∣ xa1
∣∣∣∣

2
e2

+

∣∣∣∣ ya2
∣∣∣∣

2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣

2
e1 − 1 = 0. (4.6.8)

If shape parameters e1 and e2 of the predicted superquadric object are almost equal (i.e.,

||e1−e2|| < 0.01), we rearrange the object pose so that the z-axis is close to the surface

normal vector of the table and x-axis is close to the action vector. As the object poses

are rearranged, the size parameters a1, a2, a3 are also rearranged, e.g., if the x-, y-, and

z-axis of the original object pose are rearranged to z-, x-, and y-, the size parameters

are changed by (a1, a2, a3) �→ (a3, a1, a2). Otherwise, there is no solution for z-axis

alignment. So we only rearrange the x-axis of the object pose to be close to the action

vector. The illustration of the shape alignment method is shown in Figure 4.8.

Baseline Methods. We compare our SQPD-Net with the following baseline meth-

ods: 2DFlow and SE3-Net adopted from [34], SE3Pose-Net adopted from [35], and

3DFlow and DSR-Net adopted from [40]. The 2DFlow, SE3-Net, and SE3Pose-Net take

an organized point cloud as a visual input and predict the flow vectors of the points.

88 SQPDNet: Superquadric Pushing Dynamics Network

Figure 4.8: Illustration of the shape alignment method for superquadric objects.

The 3DFlow and DSR-Net take a voxelized truncated signed distance field (TSDF) as

a visual input and predict the voxel flow. Our SQPD-Net takes the estimated objects’

poses and superquadric shape parameters as input and predicts the objects’ next poses.

While, in the existing approaches, the models directly predict motions from the pre-

processed raw visual observations, our model consists of two modules: (i) a pre-trained

recognition network R that predicts objects’ poses and shape parameters and (ii) the

SQPD-Net that predicts the objects’ next poses. We denote these two networks together

by R-SQPD-Net. For the comparison purpose, we also test the case where the ground-

truth objects’ poses and shape parameters are used as an input for the SQPD-Net and

denote it by GT-SQPD-Net.

Evaluation Metrics. Throughout, we use two types of evaluation metrics for the

learned pushing dynamics models: (i) flow error (the lower the better) and (ii) mask in-

tersection over union (mask IoU, the higher the better). First of all, we consider the vis-

ible and full flow errors. The visible flow error is the root mean squared error (RMSE)

between the ground-truth flows and predicted flows of the points on the visible surface

4.6. Experimental Results 89

of the objects, while the full flow error is the RMSE computed with all points from

the objects’ volumes. Second, we consider the 2D and 3D mask IoUs. The 2D mask

IoU is computed by using the depth images and thus only visible surfaces are taken

into consideration. On the other hand, the 3D mask IoU is computed with the complete

3D occupancy grid. The full flow error and mask IoU cannot be computed in 2DFlow,

SE3-Net, and SE3Pose-Net, because they do not estimate the complete objects’ shapes

as an intermediate step of the prediction of the pushing dynamics.

4.6.1 Equivariance Study

For the purpose of testing the equivariance of the models, we design the following ex-

periment: we train the models with only one pushing manipulation data – a 3-tuple

{o,a,o′} where o and o′ are current and next observations respectively and a is push-

ing action – so that the models overfit the given data. Then, we compare the models’

generalization capabilities with test data that are generated by applying random SE(2)-

transformation to the data. An ideal equivariant model should produce almost zero error

in the test data.

The models are trained with only one pushing data with a single object. Next, we

generate nine test data by applying nine random SE(2) transformations to the training

data, and then we evaluate the trained model using these test datasets. The experiments

are conducted using ten different training data, each with different objects and poses.

Consequently, the total number of test data is 90.

Table 4.1 shows average visible flow errors of the baseline methods and SQPD-

Nets, obtained by running the above experiment multiple times with different training

data. The 3DFlow and DSR-Net are omitted in this experiment because they cannot

make estimations if the transformed actions do not belong to the pre-defined discrete

90 SQPDNet: Superquadric Pushing Dynamics Network

Figure 4.9: Depth images of prediction results. For SE3Pose-Net, after the point cloud

moves, the space occupied before is colored black.

Table 4.1: Test visible flow error (cm).

METHOD visible flow (↓)

2DFlow [34] 4.73

SE3-Net [34] 4.73

SE3Pose-Net [35] 4.72

R-SQPD-Net (ours) 0.73

GT-SQPD-Net (ours) 0.02

4.6. Experimental Results 91

set of actions. The GT-SQPD-Net produces almost zero error as expected while the R-

SQPD-Net produces a little error originating from the recognition error. Our SQPD-Nets

are much more SE(2)-equivariant compared to the existing works. Figure 4.9 shows an

example prediction result from the SE3Pose-Net and R-SQPD-Net; the blue bounding

box represents the ground-truth next pose of the object. For the test data, the SE3Pose-

Net predicts a completely wrong motion.

More examples of the results of the equivariance study are shown in Figure 4.10.

The experimental results, including 2DFlow and SE3-Net, are given in this figure.

4.6.2 Pushing Dynamics Learning

We compare the learning performances of the SQPD-Nets and the baseline methods with

a large-scale pushing dataset where the training/validation/test data consist of 12000,

1200, and 1200 numbers of 3-tuples ({o,a,o′}), respectively.

The detailed explanation for the pushing dataset is as follows. For each sequence,

the objects are randomly chosen from the known objects, and randomly dropped on the

workspace. The number of objects per sequence varies from 1 to 4. We sample and exe-

cute a maximum of 20 random pushing actions per sequence, and we stop the sequence

when objects’ positions are out of the workspace or objects fall down. We collect data

until the total numbers of data tuples are 12000/1200/1200 for training/validation/test,

respectively. To test the generalization performance for unknown objects, we addition-

ally generate 300 data tuples per the number of objects from 1 to 4, where the objects

are randomly chosen from the unknown objects. So, the unknown test dataset consists

of 1200 data tuples. We evaluate the trained models on both the known and unknown

test datasets.

Figure 4.11 shows the predicted depth images and 3D masks for an example pushing

92 SQPDNet: Superquadric Pushing Dynamics Network

Figure 4.10: The representative three examples of the equivariance study experiments.

4.6. Experimental Results 93

Table 4.2: Evaluation metrics computed within test dataset (the unit of flow error is

cm).

Known Unknown

Flow error (↓) Mask IoU (↑) Flow error (↓) Mask IoU (↑)

METHOD visible full 2D 3D visible full 2D 3D

2DFlow [34] 2.179 - - - 2.180 - - -

SE3-Net [34] 1.631 - - - 1.701 - - -

SE3Pose-Net [35] 1.639 - - - 1.712 - - -

3DFlow [40] 1.818 1.859 0.747 0.699 1.697 1.719 0.755 0.698

DSR-Net [40] 1.325 1.331 0.720 0.705 1.531 1.524 0.665 0.632

R-SQPD-Net (ours) 0.575 0.610 0.844 0.798 0.710 0.726 0.834 0.781

GT-SQPD-Net (ours) 0.519 0.379 0.903 0.888 0.638 0.485 0.888 0.868

data in the test dataset. As shown in the ground-truth motions (left of Figure 4.11), the

red, green, and gray objects are in contact with each other and these three objects move

together when the red object is pushed. In this case, our R-SQPD-Net only successfully

predicts the complex interactive motions of the objects. Table 4.2 shows the evaluation

metrics computed within the test data and shows that our SQPD-Nets outperform the

other baseline methods by significant margins.

More examples for the results of pushing dynamics learning are shown in Fig-

ure 4.12 and Figure 4.13. The trend of the experimental results is also similar to the

experimental results in Figure 4.11. The results of 2DFlow, SE3-Net, and SE3Pose-Net,

which predict the flow of the point cloud, show that they have difficulties predicting the

motions of the objects at all. 3DFlow and DSR-Net attempt to predict the motion more

than the above methods, but the prediction accuracy is still not enough. Our SQPD-Net

accurately predicts the motion of moving objects.

94 SQPDNet: Superquadric Pushing Dynamics Network

F
ig

u
re

4
.1

1
:

D
ep

th
im

ag
es

an
d

3
D

m
ask

s
o
f

th
e

g
ro

u
n
d
-tru

th
n
ex

t
scen

e
an

d
p
red

icted
scen

es.U
pper:

D
ep

th
im

ag
es

w
h
ere

th
e

b
lu

e
b
o
u
n
d
in

g
b
o
x
es

rep
resen

t
th

e
g
ro

u
n
d
-tru

th
n
ex

t
p
o
ses

o
f

th
e

g
reen

an
d

g
ray

o
b
jects.

Low
er:

(i)

(in
co

m
p
lete)

3
D

m
ask

s
co

nv
erted

fro
m

th
e

d
ep

th
im

ag
es

fo
r

2
D

F
lo

w
,

S
E

3
-N

et,
an

d
S

E
3
P

o
se-N

et
an

d
(ii)

p
red

icted

co
m

p
lete

3
D

m
ask

s
fo

r
3
D

F
lo

w
,

D
S

R
-N

et,
an

d
R

-S
Q

P
D

-N
et.

4.6. Experimental Results 95

Figure 4.12: The representative examples of the pushing dynamics learning experiments

for the number of objects 1 and 2.

96 SQPDNet: Superquadric Pushing Dynamics Network

Figure 4.13: The representative examples of the pushing dynamics learning experiments

for the number of objects 3 and 4.

4.6. Experimental Results 97

4.6.3 Pushing Manipulation using R-SQPD-Net

In this section, we use the R-SQPD-Net trained in Chapter 4.6.2 and conduct the push-

ing manipulation tasks introduced in Chapter 4.4.2 (moving, singulation, and grasping)

in both simulation and real-world. For the real-world experimental setup, we use various

box- or cylinder-like objects as shown in Figure 4.14; the same objects are used in sim-

ulation experiments. Since we directly apply the R-SQPD-Net trained in simulation to

the real physical environment, it is reasonable to ask about the sim-to-real transfer issue.

In our experiments, we use slow pushing motions to generate quasi-static movements

of the objects and thus minimize the sim-to-real gap (for quasi-static object movements,

the dynamical properties of the objects and environment, e.g., mass, friction coefficient,

become less affective [126]).

For pushing manipulation experiments on simulation and real-world experiments, we

also use box- and cylinder-like objects inspired by YCB dataset [87]. For each task, we

use the object sets shown in Figure 4.15. In the moving and singulation tasks, a total of

10 experiments – 5 experiments for 2 object sets – are performed. In the grasping tasks,

the “grasping large” and the “grasping clutter” tasks include 5 experiments for one ob-

ject set. The objects have different poses for each experiment. Simulation manipulation

experiments are conducted by making objects of the same size as these.

For action sampling, we use the same action sampler used in data generation as

described in Chapter 4.5 on the recognized object shapes. When sampling the pushing

actions, we reject the actions that collide with the objects or the table are rejected using

the gripper collision detection method introduced in Appendix B.5.

The success criterion for each task is as follows: (i) moving is success when the

distance between the positions of the objects and the goal positions is less than 5cm

on average, (ii) singulation is success when all distances between the objects are more

98 SQPDNet: Superquadric Pushing Dynamics Network

Figure 4.14: Real-world experimental setting.

Figure 4.15: Object sets used in moving, singulation, and grasping tasks.

4.6. Experimental Results 99

than τ = 20cm, and (iii) grasping is success when at least one grasp pose is found. We

note that the candidate grasp poses for the target object are resampled every timestep

t. If the task trial does not succeed within 10 timesteps, the trial is considered as a

failure.

Figure 4.16 shows some real-world manipulation results for various tasks. For the

moving task (first row), we set the desired positions td,i as (0.3, t0,i,y, t0,i,z) and β =

0 in equation (4.4.6). For the singulation task (second row), we set τ = 20 (cm) in

equation (4.4.7). For the grasping tasks (third and fourth row), we sample about 15

to 30 candidate grasp poses for the target recognized objects. For all three examples,

our approach can find a series of pushing actions that successfully perform the desired

tasks. Notably, for the grasping tasks, without using ad hoc objective functions, the

robot realizes how to re-configure the objects so that feasible grasp poses can be found

for the target objects: (i) the robot pushes the large and flat object to the edge of the

table and (ii) the robot pushes the surrounding objects to make the surrounded target

object graspable.

Table 4.3 shows the manipulation success rates in simulation and real-world experi-

ments. There are some failure cases for pushing manipulation, and some representative

examples of the failure cases are shown in Figure 4.17. The first case is the result of a

failure to recognize the shape; this leads to inaccurate calculation of task objective func-

tion or unexpected collision with the objects (left of the Figure 4.17). Also, to prevent

the object from falling down, we provide a constraint so that the center of the object is

inside the workspace. The constraint sometimes did not work and the object falls down

from the table since recognition and trained dynamics are not perfectly accurate (center

of the Figure 4.17). The second case prevalent is the failure of sim-to-real transfer of

the pushing dynamics model. Such cases occur when pushing the standing long cylin-

der, in detail, when the same pushing action is performed, the cylinder does not fall

100 SQPDNet: Superquadric Pushing Dynamics Network

F
ig

u
re

4
.1

6
:

R
eal-w

o
rld

m
an

ip
u
latio

n
resu

lts
u
sin

g
R

-S
Q

P
D

-N
et

fo
r

m
o
v
in

g
,

sin
g
u
latio

n
,

an
d

g
rasp

in
g

task
s

(fo
r

th
e

fourth
row

case,
th

e
targ

et
o
b
ject

is
th

e
cy

lin
d
er

su
rro

u
n
d
ed

b
y

th
e

th
ree

cu
b
es).

T
h
e

red
arro

w
at

each
reco

g
n
itio

n

step
m

ean
s

th
e

o
p
tim

al
p
u
sh

in
g

actio
n
.

4.7. Additional Experimental Results 101

Figure 4.17: The representative examples of the failure cases for pushing manipulation.

Table 4.3: Simulation and real-world manipulation results.

TASK Simulation Real

Moving 9/10 8/10

Singulation 9/10 8/10

Grasping clutter 4/5 4/5

Grasping large 4/5 3/5

over in the simulation but sometimes falls over in the real-world experiment (right of

the Figure 4.17). These unexpected object motions cause the performance drop of the

pushing manipulation tasks.

4.7 Additional Experimental Results

4.7.1 Comparison with Data Augmentation

In this subsection, we qualitatively compare the performance of the pushing dynamics

model with and without SE(2)-equivariant module and shape alignment module. We

use the same dataset, network architecture, and training method, except the fact that we

perform random data augmentation with SE(2) transformations and object coordinate

frame transformations during training as shown in Figure 4.18.

102 SQPDNet: Superquadric Pushing Dynamics Network

Figure 4.18: Random data augmentation during training.

Baseline Methods. We compare the the SQPD-Nets with and without SE(2) equiv-

ariant module and shape alignment module. We distinguish between these models using

SE(2) equivariant module and shape alignment module by an “+ SE(2)” and “+ Shape”

after the network name. For example, the SQPD-Net with only SE(2) equivariant mod-

ule is denoted by “SQPD-Net + SE(2)”. For the comparison purpose, the ground-truth

objects’ poses and shape parameters are used for the all SQPD-Nets (i.e., GT-SQPD-

Nets). Except for this subsection, “SQPD-Net” denotes “SQPD-Net + SE(2) + Shape".

Evaluation Metrics. We use two types of evaluation metrics: (i) flow error and (ii)

pose error. The flow errors including visible and full flow errors are the same ones de-

scribed in Chapter 4.6. The pose error measures the mean position error and orientation

error between the ground truth and the predicted object poses.

Figure 4.19 shows an example of pushing data in the test dataset. In this example,

we check whether the trained models (with and without the SE(2)-equivariant mod-

ule and shape alignment module) can generate equivariantly transformed objects’ next

poses given transformed inputs. We consider one input scene and two transformed input

scenes (see the first row of Figure 4.19). The second and third row of Figure 4.19 show

the predicted objects’ next poses of the models, where we draw the output scene from

SE(2)-transformed input in the same view angle with the original scene by applying

4.7. Additional Experimental Results 103

Figure 4.19: A qualitative comparison of the pushing dynamics models trained with and

without our SE(2)-equivariant module and shape alignment module. For each figure,

transparent and bold objects represent the scene before and after a pushing action is

applied, respectively.

inverse transformation to the scene for easy comparison.

For the vanilla method without the module, despite the use of data augmentation

in the training process, the predictions are not equivariant with respect to the group

actions (see the zoomed-in part of the second row of Figure 4.19). The predictions by

our method show equivariant transformations as the input scene transformed (third row

of Figure 4.19). This implies that our model is fully equivariant to the input transfor-

mations, whereas the baseline model with data augmentation (i.e., pure SQPD-Net) is

not.

Table 4.4 shows the evaluation metrics for the learned pushing dynamics models.

104 SQPDNet: Superquadric Pushing Dynamics Network

Table 4.4: Evaluation metrics for the learned pushing dynamics models; the units for

the flow error and pose error (pos. and ori.) are cm and (cm and degree), respectively.

Flow error (↓) Pose error (↓)

METHOD visible full pos. ori.

SQPDNet 1.327 1.083 1.270 10.427

SQPDNet + Shape 1.195 0.995 1.175 7.960

SQPDNet + SE(2) 1.183 0.950 1.158 8.846

SQPDNet + SE(2) + Shape 0.712 0.550 0.676 7.606

The SE(2) equivariance significantly enhances the accuracy when compared to the vani-

lla model with data augmentation, and employing the additional shape alignment method

yields even greater performance improvements. For qualitative comparison, we consider

another example of pushing data in the test dataset as shown on the left of Figure 4.20.

As shown in the ground truth, the green, blue, and gray objects move together due to the

contact when the green object is pushed. Ideally, the learned pushing dynamics model

should be able to predict not only the next pose of the pushed object but also the next

poses of other surrounding objects due to these complex interactions. The right of Fig-

ure 4.20 shows the predicted objects’ next poses of the models trained with and without

the modules. The vanilla model performed poorly despite data augmentation. The mod-

els using the only one module succeeded in making predictions closer to the ground

truth than the vanilla model, but there are still some errors, especially in predicting the

motion of the blue object. The model considering both modules shows more accurate

performance than the other models (see the blue object in Figure 4.20).

4.7. Additional Experimental Results 105

Figure 4.20: A qualitative comparison of the pushing dynamics models trained with and

without our modules. For each figure, transparent and bold objects represent the scene

before and after a pushing action is applied, respectively.

4.7.2 Pushing Dynamics Learning on Real-world Pushing Data

In this experiment, we train our SQPD-Net on the real-world dataset and compare the

performance with the physics-based simulator (PyBullet). We generate a real-world push-

ing manipulation dataset using four cube-shaped objects of different sizes shown in Fig-

ure 4.21. In this case, one scene contains only one of these four objects. For each scene,

the object is placed in a fixed pose (rotated 22.5◦ degrees with respect to the robot’s

base frame), then we sample and execute one of the 20 different random pushing ac-

tions per object; so the total number of data tuples is 80. To annotate the pose of the

object before and after the pushing action, we use the Iterative Closest Point (ICP)

algorithm that matches the point cloud observation to the ground-truth object model.

We then divide the four objects into three known objects and one unknown object; the

known objects are used to train our R-SQPD-Net, and the unknown objects are used

to evaluate the trained model. The number of cases of dividing objects is four, and the

model is trained and evaluated in all these cases. We denote the model trained in box

106 SQPDNet: Superquadric Pushing Dynamics Network

Figure 4.21: Objects for real-world pushing data.

a, b, c and evaluated in box d as “a, b, c → d”. To get the predictions of PyBullet, we

drop the superquadric object given by our trained recognition model into the simulator

and let the robot simulator perform the same pushing action that is performed in the

real-world.

Figure 4.22 shows the motion of the objects predicted by the PyBullet simulator and

trained R-SQPD-Net. As shown, both PyBullet and R-SQPD-Net tend to predict the po-

sition and approximate direction of the objects after movement. However, R-SQPD-Net

predicts the orientation of the predicted object much better. This is due to some dif-

ferences between the dynamic natures of PyBullet and the real-world. Since our model

is trained directly from data collected in the real-world, it can predict the dynamics

4.7. Additional Experimental Results 107

Table 4.5: Translation and rotation errors computed with real-world data.

PyBullet R-SQPD-Net

MODEL translation (cm) rotation (◦) translation (cm) rotation (◦)

2,3,4 → 1 1.025 ± 0.520 8.129 ± 7.206 0.681 ± 0.349 4.304 ± 4.091

1,3,4 → 2 1.007 ± 0.599 4.000 ± 3.658 0.972 ± 0.580 3.581 ± 3.110

1,2,4 → 3 0.963 ± 0.702 13.038 ± 7.357 0.800 ± 0.347 4.197 ± 3.508

1,2,3 → 4 0.847 ± 0.541 4.584 ± 3.308 0.674 ± 0.512 2.995 ± 2.346

of pushing objects well. In order to quantitatively verify this fact, translation and rota-

tion errors are measured for the poses of the predicted objects as shown in Table 4.5.

We have confirmed that R-SQPD-Net outperforms PyBullet overall, and especially, our

model performs much better in terms of rotation errors. In conclusion, we verify that

our model can be successfully trained on real-world data. Also, the simulator is some-

what accurate, but to perform more accurate pushing manipulation in the real-world, we

should collect a dataset from the real-world and train the model on this dataset.

4.7.3 Pushing Manipulation via Interaction

To verify that our model R-SQPD-Net works well for cases where multi-object interac-

tions are essential to achieve the goal, we have conducted a new pushing manipulation

task named interactive moving.

Interactive moving is similar to moving task in that the goal is to move some

objects, but here it is a task that moves one target object to the desired pose. In this

case, the robot should not push the target object. The current pose of the target object

and the desired pose are given as Tt and Td ∈ SE(3) respectively, then we define a

terminal cost function as

q(sT+1) = ‖tT+1 − td‖22, (4.7.9)

108 SQPDNet: Superquadric Pushing Dynamics Network

F
ig

u
re

4
.2

2
:

R
eal-w

o
rld

g
ro

u
n
d
-tru

th
p
u
sh

in
g

d
ata

(y
ello

w
)

an
d

p
u
sh

in
g

d
y
n
am

ics
p
red

ictio
n

resu
lts

o
f

P
y
B

u
llet

p
h
y
sics

sim
u
lato

r
(b

lu
e)

an
d

train
ed

R
-S

Q
P

D
-N

et
(g

reen
).

T
h
e

in
itial

p
o
se

o
f

th
e

o
b
ject

b
efo

re
b
ein

g
p
u
sh

ed
is

in
d
icated

in
g
ray

co
lo

r.

4.7. Additional Experimental Results 109

where the notation t(·) denotes the translation vector of T(·). We set the desired po-

sitions td as (0.3, 0.0, t0,z); the task is described in the left of Figure 4.23. Since the

robot cannot directly push the target object, it must move the target object to the de-

sired position by pushing other objects. That is, this task essentially requires interaction

between multi-objects. We sample 100 action sequences and the time horizon of each

sequence is set to one.

Figure 4.23 shows some manipulation results for interactive moving tasks. In the

case of the first row, it succeeded in moving the target object to the desired position

by pushing the yellow box. Even in the case of the slightly difficult case in the second

row, our approach can find the series of actions that sequentially push the yellow and

green boxes so that successfully perform the desired task. In conclusion, We verify that

R-SQPD-Net can learn multi-object interaction well and that it can be used properly in

manipulation tasks.

4.7.4 Pushing Manipulation using Physics-based Simulator

In this experiment, we compare the performance of our R-SQPD-Net and the physics-

based simulator (Pybullet) in pushing manipulation tasks, highlighting the importance

of learning a data-driven pushing dynamics model. Since our method recognizes the

shapes of tabletop objects at an intermediate stage, a straightforward approach to using

a physics simulator as a dynamics model involves inserting the recognized shapes into

the simulator. Accordingly, we compare the following baselines with dynamics mod-

els: R-SQPD-Net, Pybullet with recognition results, denoted as “Pybullet (w/ Recog.),”

and Pybullet with ground-truth object shapes, denoted as “Pybullet (w/ GT.).” We test

these dynamics models on the same tasks used in Chapter 4.4.2 – including moving,

singulation, grasping clutter, and grasping large – in the simulation environment. In the

110 SQPDNet: Superquadric Pushing Dynamics Network

F
ig

u
re

4
.2

3
:

R
eal-w

o
rld

m
an

ip
u
latio

n
resu

lts
u
sin

g
R

-S
Q

P
D

-N
et

fo
r

th
e

in
teractiv

e
m

o
v
in

g
task

(th
e

targ
et

o
b
ject

is
th

e
cy

lin
d
er

su
rro

u
n
d
ed

b
y

cu
b
es).

T
h
e

red
arro

w
at

each
reco

g
n
itio

n
step

m
ean

s
th

e
o
p
tim

al
p
u
sh

in
g

actio
n
.

4.7. Additional Experimental Results 111

Table 4.6: Comparison of R-SQPD-Net and the Pybullet simulator in simulation-based

manipulation experiments.

Moving Singulation Grasping clutter Grasping large

MODEL Succ. Steps Succ. Steps Succ. Steps Succ. Steps

R-SQPD-Net 19/20 - 18/20 5.17 9/10 2.50 9/10 2.56

Pybullet (w/ Recog.) 19/20 - 15/20 5.43 7/10 3.29 9/10 2.22

Pybullet (w/ GT) 20/20 - 19/20 4.73 9/10 2.56 9/10 2.22

moving and singulation tasks, a total of 20 experiments with random object sets are per-

formed. For the grasping tasks, the “grasping large” and “grasping clutter” tasks each

comprise 10 experiments for one object set, with the objects in different poses for each

experiment.

Table 4.6 presents the manipulation success rates and the average number of ac-

tion steps required for success in simulation experiments. In the case of moving tasks,

we do not report the number of steps due to the large variation depending on the sce-

nario. We have observed that our R-SQPD-Net outperforms the PyBullet simulator with

recognition results, particularly in singulation and grasping clutter tasks that involve in-

teractions between objects. This superiority is evident both in terms of success rates

and average action steps. The performance of Pybullet with ground-truth shapes is sim-

ilar to, or better than, the other baselines. This suggests that inaccuracies in recognition

can lead to performance degradation when using a physics-based simulator. By con-

trast, our R-SQPD-Net achieves higher performance than Pybullet by compensating for

these recognition inaccuracies through its data-driven model. In conclusion, we find that

jointly learning the data-driven model SQPD-Net with a recognition model yields bet-

ter performance in vision-based pushing manipulation problems than using a physics

simulator combined with a recognition model.

112 SQPDNet: Superquadric Pushing Dynamics Network

4.8 Conclusion

This paper has proposed a SE(2)-equivariant pushing dynamics model. Using the super-

quadric representations of object shapes, we have proposed a SuperQuadric Pushing Dy-

namics Network (SQPD-Net). Through extensive empirical validations, we confirm that

the SQPD-Net significantly outperforms the existing state-of-the-art visual pushing dy-

namics models. Moreover, we have verified that the SQPD-Net can be used for various

pushing manipulation tasks.

Limitations and Future Directions. First, since SQPD-Net considers single super-

quadric shaped objects, it is not trivial to apply it directly to more complex or non-

convex shapes. As the researches on representing objects in multiple superquadrics prog-

ress [102, 103], extending our approach to multiple superquadric-shaped objects remains

a future work. Second, the dynamics prediction task becomes challenging when push-

ing an object with a non-uniform mass distribution since different mass distributions

will lead to different motions. In this case, if we can consistently predict the reference

poses of the objects (e.g., pre-specified poses in CAD models), our SE(2)-equivariant

model is applicable regardless of the mass distribution. Since predicting reference poses

is not easy with only depth images, this is a limitation of our approach. As one possi-

ble solution, additional information such as RGB images should be utilized [127, 128].

Lastly, there could be some situations where the SE(2)-equivariance does not apply; in

this case, our approach can be detrimental. One example is that the friction coefficients

are different in different regions of the table. As a research direction to overcome this,

a locally SE(2)-equivariant model – SE(2) space is divided into several subspaces and

the model is equivariant only within each subspace – can be considered.

5
Search-for-Grasp: Superquadric

Recognition for Mechanical

Search

5.1 Introduction

Finding and grasping a desired target object on a cluttered shelf – where the target is

occluded by unknown objects and initially not visible to a vision sensor – is a signifi-

cant challenge in robotic manipulation. This task is further complicated when the pose

of the vision sensor is fixed. In such scenarios, the robot must rearrange surrounding

objects to identify the target’s pose and grasp it, all while avoiding collisions with the

shelf and nearby objects. The geometric characteristics of the shelf, which allow visual

observations solely from the front and limit the manipulator’s workspace, add another

layer of complexity.

113

114 Search-for-Grasp: Superquadric Recognition for Mechanical Search

Figure 5.1: A 3D recognition-based mechanical search and grasping of the target object

(red cylinder).

Previous research on finding and grasping the target object has focused on (i) sim-

pler environments, such as flat tables or bins [129, 130, 131, 132, 133, 134, 94, 135],

or (ii) complex shelf environments but with the assumption that all object shapes and

poses are known (e.g., assuming the shelf’s inside can be seen through its transparent

top) [136, 137, 138, 139, 140, 141, 142]. Recent studies have ventured into more real-

istic shelf scenarios, where the surrounding non-target objects are unknown, termed the

mechanical search. However, these often depend on specialized, elongated tools to ma-

nipulate the objects within tight shelf spaces [143, 144, 145]. As a result, the challenge

of finding and grasping the target object in a densely populated shelf environment using

a standard robot gripper, devoid of specialized tools, remains open.

To our knowledge, we are the first to offer a practical method for finding and grasp-

ing the target object on a cluttered shelf populated with unknown objects, using a stan-

dard robot gripper (as shown in Figure 5.1). Like previous studies, we utilize pushing

5.1. Introduction 115

and pick-and-place actions. However, we employ a standard two-finger gripper, intro-

ducing several practical challenges. For instance, generating a collision-free robot path

during the grasp the target or during a pick-and-place action becomes non-trivial when

only partial visual information is accessible.

In this paper, we propose a comprehensive framework for mechanical search and

grasping. Specifically, we introduce two indicator functions (denoting the target’s can-

didate pose by x ∈ SE(3)): (i) an existence function f(x) that indicates if the target

can be present at x and (ii) a graspability function g(x) that indicates if the target at

x is graspable. The objective then becomes to rearrange the objects until only one ex-

istable and graspable pose x∗ remains, i.e., there exists a unique x∗ ∈ SE(3) such that

f(x∗) = 1 and g(x∗) = 1. Leveraging the dynamics models of these functions, we

formulate a model-based optimal control with a suitably-designed objective function.

Furthermore, we provide practical algorithms that leverage a 3D object recognition

model to effectively estimate of the functions ft, gt and their corresponding dynam-

ics models. We employ a recent 3D recognition model rooted in superquadric prim-

itives [64]. Notably, the superquadric representation allows for rapid collision checks,

depth image rendering, and the utilization of pushing dynamics models [65]. To miti-

gate accumulated estimation errors during optimal control, we adopt the model predic-

tive control with a short time horizon. A distinguishing feature of our method, com-

pared with existing methods, is the use of a 3D recognition model and leveraging the

recognition results for mechanical search.

Through experiments in both simulations and real-world scenarios, we have vali-

dated the effectiveness of our 3D reconstruction-based approach. Our method consis-

tently finds and grasps the target object using a standard two-finger robot gripper, even

in the presence of noise from vision sensor data in real-world settings.

116 Search-for-Grasp: Superquadric Recognition for Mechanical Search

5.2 Related Works

5.2.1 Mechanical Search on Shelves

Object search and mechanical search. The goal of object search (sometimes called

as target object retrieval) is to find a target object from unknown environments. Some

works have focused on active perception problem of making decisions of the sequence

of camera poses to find a target object using a camera-mounted mobile robot [146,

147, 148, 149, 150, 151, 152]; recently, deep learning-based methods have been pro-

posed in terms of target-driven visual navigation [153, 154, 155, 156]. However, in a

more complex environment, such as a cluttered environment on a tabletop or an en-

vironment where objects are placed on a shelf, it may be impossible to find a target

object by controlling only the position of the camera. To solve these issues, interac-

tive perception-based methods – in which the robot can change the environment to find

the target object – have been proposed. Object search using interactive perception is

recently called mechanical search.

Mechanical search methods. The earlier works have attempted to solve the prob-

lem of searching the target object via performing pushing or grasping actions to the

surrounding objects in algorithmic manners [129, 130, 131]. Although these methods

have made a significant contribution to the research topic of mechanical search, many

assumptions are made in the environment to make the problem tractable, and they are

generally computationally complex and therefore slow. To improve these methods (e.g.,

relaxing the assumptions), several works have proposed a POMDP model and its solver

(e.g., DESPOT [132] or POMCP [133]) for mechanical search. A recent work provides

a generalized formulation of mechanical search and solve this problem effectively using

5.2. Related Works 117

deep learning-based perception module (e.g., object segmentation and recognition net-

work) and grasping module (e.g., pre-trained Dex-Net) [134]. The follow-up paper pro-

poses a novel perception module and a policy that minimizes the support of learned oc-

cupancy distributions obtained from the perception, and claims that the proposed method

outperforms the previous methods [94]. Another work propose a 3D shape recognition-

based approach that predicts the occluded geometries from the vision sensor image and

then utilize this information to efficiently find the target object [135]. Our work is also

in the spirit of [135] in utilizing the 3D shape recognition module to solve the me-

chanical search problem efficiently (e.g., reduce the number of total actions), but we

use implicit representation for the recognized objects to utilize them for efficient and

effective action decision (see Appendix 5.2.3).

Mechanical search on shelves. As the shelves are often used to store the objects in

home environments or logistic warehouses, mechanical search on shelves are being stud-

ied as an important research topic [143, 144, 145]. Object manipulation on the shelves

is more challenging because of the several task constraints: the manipulator must not

collide with the shelf, the objects cannot be removed from the shelf, and only a nearly-

lateral camera view is available. These constraints limit the action space of the ma-

nipulator and the amount of visual information that can be obtained from the vision

sensor. An earlier work proposes an extension of the previous method named lateral

access X-ray [94] to solve laterally-accessible mechanical search [143]. The follow-up

studies use novel tools to extend the robot action space from just pushing to pushing-

and-grasping [144] and stacking [145].

The main difference from these works is that the graspability of the target object is

taken into consideration when performing mechanical search. The existing studies use a

custom long suction gripper specialized for mechanical search, so the graspability of the

target object does not need to be considered separately. On the other hand, when using

118 Search-for-Grasp: Superquadric Recognition for Mechanical Search

the standard robot gripper (e.g., parallel-jaw gripper), we need to find a trajectory that

does not collide with the other surrounding objects and the shelf to grasp the target ob-

ject. To find a non-collide trajectory, the 3D reasoning of the current scene is inevitable

for 6-DOF grasping, and accordingly, a 3D recognition model has been adopted in our

method. The existing works only perform 2D reasoning for the scene since they do not

have to consider the graspability, and the point that we perform mechanical search task

adopting 3D recognition is also different from other works.

5.2.2 Object Rearrangement for Target Object Grasping

The object rearrangement generally refers to the problem of finding the feasible paths

of the objects that move the objects from their initial configuration to desired final con-

figuration, and in fact, a lot of various object rearrangement studies has been conducted;

in this subsection, we only focus on the object rearrangement researches for grasping

the target object. An earlier work propose an algorithm to remove the surrounding ob-

jects using prehensile manipulation to grasp the target object without robot-object col-

lisions [136]. Since the action space is limited only by prehensile manipulation, object

rearrangement algorithms using non-prehensile manipulation have also been conducted;

for example, these algorithms are based on tree-search [137], persistent homology [138],

and semi-autonomous tele-operation [139]. We note that unlike mechanical search, these

papers assume that the information about the target object (and sometimes information

about the environment) is known. Other works focus on more general cases where the

target object is possibly occluded [140, 141, 142]. If the target object is occluded, the

proposed performs an algorithm to find the target similar to the mechanical search. It is

worthy to note that our problem is more challenging since the surrounding objects can

be removed in previous studies, but cannot in our case. Also, these studies first find the

5.3. A General Framework for Mechanical Search and Grasping 119

target object and then grasp it when the target is occluded; we argue in this paper that

finding a target object while simultaneously considering whether it can be graspable is

more efficient.

Grasping the invisible. It is valuable to note that our problem setting is the closest

to the problem considered in [93]. Their work also considers the problem of grasping

the target object while considering the mechanical search problem. They named this

problem grasping the invisible and introduce a deep learning-based end-to-end method,

more specifically, a critic function that maps the visual observations to the expect re-

wards of robot pushing or grasping actions. This paper is the same in that it addresses

the same problem as ours, but the proposed methods so far are limited to a specific

environment and may require a lot of data for the model to generalize to other envi-

ronments. We develop a method that can be applied in various environments by using

object recognition, which is known to be well generalizable to unseen scenes [64, 65],

rather than an end-to-end method.

5.2.3 Shape Recognition-based Robot Manipulation

We refer to Chapter 4.2.3 for detailed reviews of shape recognition-based robot manip-

ulation methods.

5.3 A General Framework for Mechanical Search and Gra-

sping

In this section, we propose a general framework for mechanical search and provide

two specific algorithms: (i) search-and-grasp and (ii) search-for-grasp, using the model-

based optimal control formulation. The search-and-grasp method executes actions first

120 Search-for-Grasp: Superquadric Recognition for Mechanical Search

to find the target and then executes additional actions to rearrange the objects to make

the target graspable, while the search-for-grasp method integrates the search and grasp

processes into a cohesive framework so that the target object’s graspability is taken into

account in the search phase.

Our focus lies specifically on scenarios where the target object is known – where

its information is given as the color and geometry – and is fully occluded by other un-

known objects. We assume that the robot can interact with objects either by pushing or

pick-and-place actions to rearrange the objects. When the robot performs the pick-and-

place action, it is only allowed to place an object in another empty space on the shelf

(i.e., object stacking is not allowed). For the target object, we assume that it is placed

in a straight-up pose (i.e., not tilted) and not stacked on top of the other surrounding

objects. Also, when the robot rearranges the surrounding non-target objects, the target

object is assumed to remain stationary.

We denote the target object’s pose by x ∈ SE(3); since the target object is not

tilted and stacked, it is sufficient to represent the object pose as x ∈ SE(2). Instead

of dealing with the continuous pose space SE(2), to simplify numerical computations,

we restrict our attention to a finite subset X ⊂ SE(2). The two core components in

our framework are (i) an existence function f : X → {0, 1} and (ii) a graspability

function g : X → {0, 1}. The existence function f(x) indicates whether the target

object can be present at the pose x or not. For example, given an observation shown in

Figure 5.2 (Upper), consider two candidate target poses x ∈ X (i.e., the red cylinders

in Figure 5.2 Lower). For f(x) to be 1, the rendered image must match the observation

(there are other conditions as well, details are in the next section), otherwise, f(x) = 0.

In practice, considering the discretization resolution of X , f(x) is considered to be 1 if

the target object pose can exist near x. Naturally, it captures the uncertainty of the target

object’s pose because
∑

x∈X f(x) represents the number of possible object poses; the

5.3. A General Framework for Mechanical Search and Grasping 121

Figure 5.2: Illustration on the existence function f(x). Upper: Observation. Lower: Can-

didate poses and hypothetical rendering results.

122 Search-for-Grasp: Superquadric Recognition for Mechanical Search

greater
∑

x∈X f(x), the more uncertain. We assume X is sufficiently densely discretized

so that
∑

x∈X f(x) is lower bounded by 1 (i.e., the target object must exist in at least

one x ∈ X). The graspability function g(x) indicates whether the target object at the

pose x is graspable or not.

Denote the existence and graspability functions at a discrete timestep t by ft(x)

and gt(x) and a pushing or pick-and-place action by at. We assume that the dynamics

models for ft(x) and gt(x) are given and denoted by F and G such that ft+1(x) :=

F(ft, at)(x) and gt+1(x) := G(gt, at)(x). Additionally, we assume that the uncertainty

of the target object pose is not increasing in t, i.e.,
∑

x∈X ft(x) ≥
∑

x∈X F(ft, at)(x),

regardless of at. This non-increasing uncertainty assumption comes from the prior as-

sumption that the target object does not move when an action is applied because it is

impossible for an object suddenly can exist where it could not originally exist.

Given initial f0 and g0 and dynamics models F and G, we formulate a search-

for-grasp method as a model-based optimal control. Specifically, the goal is to find a

sequence of actions a0, . . . , aT for a fixed time T , so that fT (x
∗) = 1 for only one

x∗ ∈ X – if there are more than one, then we cannot specify at which x the target

object exists – and that is graspable, i.e., gT (x
∗) = 1. For this purpose, we formulate

the following model-based optimal control problem:

min
a1,...,aT

∑
x∈X

fT (x) + αfT (x)(1− gT (x)), (5.3.1)

s.t. ft+1(x) = F(ft, at)(x), (5.3.2)

gt+1(x) = G(gt, at)(x), (5.3.3)

where α is a hyperparameter. Minimizing the first term in (5.3.1) makes ft have only

one x∗ such that fT (x
∗) = 1 – since the existence function is lower bounded by 1 –,

and minimizing the second term enforces gT (x
∗) = 1. Without the second term, even

5.4. 3D Object Recognition-based Mechanical Search 123

though the target object becomes visible, there is no guarantee that it will be graspable.

In practice, we prefer to perform a minimum number of actions needed for the

task, rather than for a pre-determined fixed length T . We introduce a discount factor

γ ∈ (0, 1] and propose a modified version of the optimal control problem:

min
a1,...,aT

T−1∑
t=0

γt(Jt+1 − Jt) = γTJT +
1− γ

γ

T∑
t=1

γtJt − J0, (5.3.4)

where Jt :=
∑

x∈X ft(x) + ft(x)(1 − gt(x)). As γ → 1, the new objective function

converges to the original one in (5.3.1) since J0 is constant. For γ < 1, Jt for t < T

are now taken into account, and thus minimizing (5.3.4) leads to accomplishing the task

quickly. A γ that is too small can make the problem difficult, so an appropriate level

of γ needs to be found.

Additionally, we propose a computationally lighter version, a search-and-grasp met-

hod. In the cost term Jt in (5.3.4), the computation cost of gt(x) is very high since it

requires the planning of multiple collision-free paths (as we explain in the next section

in more details). The function gt(x) must be calculated for all x such that ft(x) = 1,

thus as
∑

x ft(x) is bigger, the computation cost increases. In the search-and-grasp met-

hod, we first find the target by using the first term only Jt =
∑

x ft(x). Then, after the

target is found at x∗, we use the second term Jt = 1− gt(x
∗) to rearrange the objects

to make the target graspable. Since the target pose is already specified at the search

phase, in the second stage, we need to compute the graspability function gt only at one

x∗, which significantly reduces the total computation time.

5.4 3D Object Recognition-based Mechanical Search

In this section, as one practical way to implement our framework, we propose an object

recognition-based approach. We assume that a scene contains multiple unknown objects

124 Search-for-Grasp: Superquadric Recognition for Mechanical Search

and a known target object, and the RGB-D camera’s pose is fixed so can only capture

one side of the scene (e.g., a shelf containing objects from the front view). From the

partial view information of the scene, our strategy is to first recognize the shapes and

poses of the objects and then to use the recognition results to estimate the existence

and graspability functions f and g and the dynamics models F and G. For the 3D

recognition model, we include the details about the architectures and the training details

in Appendix C.1.

5.4.1 Existence and Graspability Function Estimates f̂ and ĝ

Given a partial visual observation o, let a set of estimated superquadric shape parameters

and poses be denoted by s = {(qi,Ti)}. Further, we assume that an indicator variable

c ∈ {0, 1} – indicates whether the target object is visible (i.e., c = 1) or not (i.e.,

c = 0) in the observation o – is available. If target is visible (i.e., c = 1), we assume

that the target object’s pose can be estimated accurately. Using these estimates s and c,

we obtain the estimates for the existence and graspability functions denoted by f̂(x; s, c)

and ĝ(x; s).

The key idea is to locate the recognized superquadric objects in the simulation,

as well as the target object at a hypothetical pose x ∈ X . If c = 1, the existence

function f̂ , since we know at which x∗ the target object exist, is 1 only at x∗, i.e.,

f̂(x∗; s, c = 1) = 1 and 0 at other x ∈ X . If c = 0, f̂(x; s, c = 0) is defined to be

1 if (i) depth rendering results with and without the target object at x are identical

and (ii) there is no collision between the recognized objects, the environment, and the

target object. Otherwise f̂(x; s, c = 0) = 0. In detail, the existence function f̂(x) can

be calculated by the multiplication of the inverse-visibility function f̂d(x) and collision

5.4. 3D Object Recognition-based Mechanical Search 125

function f̂c(x), i.e.,

f̂(x) = f̂d(x)f̂c(x).

The inverse-visibility function f̂d : X → {0, 1} is a function in which f̂d(x) = 1

if the depth rendering results with and without the target object at x ∈ X are iden-

tical (i.e., target object is invisible) and f̂d(x) = 0 otherwise. The collision function

f̂c : X → {0, 1} is a function in which f̂c(x) = 1 if there is no collision between the

recognized objects, the environment, and the target object at x ∈ X and f̂c(x) = 0 oth-

erwise. The depth rendering and collision checking can be performed efficiently using

3D recognition results, and the details on the computation of these functions are given

in Appendix C.2.

The graspability function ĝ(x; s) is defined to be 1 if we can find a collision-free

grasping trajectory of the robot gripper, where all possible collisions between the robot

arm, gripper, environment, and multiple objects should be taken into account. The grasp

planning can also be performed efficiently using 3D recognition results, and the details

on the computation of graspability functions are given in Appendix C.3.

5.4.2 Approximate Dynamics Models F̂ and Ĝ

Then, we construct the approximate dynamics models for ft and gt by using (i) the

dynamics of st denoted by st+1 = S(st, at) – where we just transform the selected

object for the pick-and-place action and use pre-trained SE(2)-equivariant pushing dy-

namics model for pushing action [65] – and (ii) the function estimates f̂ and ĝ. Since

f̂ takes the classification label c as an input, we need a dynamics model for ct, but it

is hardly possible to know if the target will be visible or not in the future given an

action at. We take a conservative strategy and assume that the visibility of the target

object c̃t+1 does not change at t+ 1, i.e., c̃t+1 = ct. Then, for given ft and gt at time

126 Search-for-Grasp: Superquadric Recognition for Mechanical Search

t, the approximate dynamics models are defined as follows:

F̂(ft, at)(x) := ft(x)f̂(x; st+1, c̃t+1); Ĝ(gt,at)(x) := ĝ(x; st+1), (5.4.5)

where st+1 = S(st,at) and c̃t+1 = ct. The existence function F̂(ft, at)(x) is 1 if

both ft(x) and f̂(x; st+1, ct+1) are 1, which guarantees the non-increasing uncertainty

condition for F , i.e.,
∑

x∈X ft(x) ≥
∑

x∈X F̂(ft, at)(x).

5.4.3 Sampling-based Model Predictive Control

With these approximated functions and their dynamics, we solve an approximated model

-based optimal control as described below:

min
a1,...,aT

T−1∑
t=0

γt(Jt+1 − Jt), (5.4.6)

s.t. Jt =
∑
x∈X

f̂t(x) + αf̂t(x)(1− ĝt(x)), (5.4.7)

f̂t(x) = f̂d(x)f̂c(x), (5.4.8)

f̂t+1(x) = F̂(f̂t, at)(x), (5.4.9)

ĝt+1(x) = Ĝ(ĝt, at)(x), (5.4.10)

where an initial observation o0 and function estimates f̂0(x) = f̂(x; s0, c0), ĝ0(x) =

ĝ(x; s0) are given. Since both the function estimates and their dynamics models have

numerical errors, we perform the model predictive control (MPC) where we iterate the

following procedure for T times: for t = 0, . . . , T − 1 (i) update initial estimates of

f̂t, ĝt from a new observation ot, (ii) solve the above model-based optimal control with

a short time horizon M < T , and (iii) take only the first action at.

Implementation details. To solve the iterative optimization in MPC (where we set

T = 10), we use M = 3 and take a sampling-based approach. The actions space A,

5.4. 3D Object Recognition-based Mechanical Search 127

whose elements are either pushing or pick-and-place actions, is defined based on the

object recognition results and as a discrete set that can be efficiently searched through

sampling (sampling details can be found below). We stop the MPC iteration if the tar-

get is visible and graspable, so the total number of actions can be less than T . The

objective function is slightly modified so that, in Jt =
∑

x∈X f̂t(x) + f̂t(x)(1− ĝt(x)),

the graspability function ĝt(x) – which originally could take 0 or 1 – now can take

1, 0,−1,−2,−3, . . . where ĝt(x) = −n + 1 indicates that generated grasping trajecto-

ries for the target at x collides with at least n objects. This modified objective function

provides more dense signals, making the optimization problem easier to solve, while

not changing the optimal solution. The details for modified graspability function can be

found in Appendix C.3.

5.4.4 Action Space and Action Sampling Method

As noted above, the action space A is composed of pushing or pick-and-place actions.

In this section, we describe the details of the pushing and pick-and-place actions, and

then describe the action sampling methods for manipulation. The details of the pushing

action and the pick-and-place action including sampling processes and scene prediction

are described in Figure 5.3.

Pushing action. A pushing action is defined by (Tpush,d) ∈ SE(3) × R
3, where

Tpush ∈ SE(3) is an initial gripper pose and d ∈ R
3 is a displacement of the gripper.

To sample the initial gripper pose Tpush, an index ir from the recognized object indices

i = 1, ..., N is selected and then a direction (left or right) for pushing the selected

object ir is selected. Then Tpush is defined from the pose and the shape parameters of

the selected object (qir ,Tir) and the direction to push; (i) the gripper is tilted about 30

degrees along the y-axis of the gripper frame and (ii) the distance between the selected

128 Search-for-Grasp: Superquadric Recognition for Mechanical Search

Figure 5.3: Sampling process and predicted scene after applying the action for pushing

and pick-and-place actions.

Figure 5.4: Visual description of the pushing action.

5.4. 3D Object Recognition-based Mechanical Search 129

object and the gripper (i.e., Chamfer distance between point clouds sampled from the

meshes) is set to 1cm. The pushing action is described in Figure 5.4. If the gripper at

the pose Tpush collide with the surrounding objects, the action is rejected; for collision

checking, we use the method used in Appendix C.2. The displacement of the gripper d

is sampled from a discrete set {5, 10, 15}cm. For each sampled action, we predict the

next state st+1 using a pre-trained pushing dynamics model named SQPD-Net [65].

Pick-and-place action. A pick-and-place action is defined by (Tgrasp,Tplace) ∈ SE

(3)×SE(3), which are gripper poses when it grasps and places the object, respectively.

To sample the grasp pose Tgrasp, an index ig from the recognized object indices i =

1, ..., N is selected and a grasp pose is selected from the candidate grasp poses of the

selected object (qig ,Tig); we generate the grasp poses using the same strategy we used

in Appendix C.3. Then a gripper pose to place Tplace is selected from the poses in

which the grasped object does not overlap (i.e., do not collide with) other surrounding

objects and the shelf; we use the collision checking method used in Appendix C.2.

We check the collision of the trajectory when grasping and placing and the action is

rejected if there is a collision; we use the same method in Appendix C.3 when checking

collision. For each sampled action, we predict the next state st+1 by just applying the

transformation T−1
graspTplace to the selected object.

Action sampler. We first check which objects can be pushed or grasped (for pick-

and-place action); whether an object can be pushed or grasped is noted in the action

description section above. Let Ip = {ip1, . . . , ipNp} and Ig = {ig1, . . . , igNg} be the

set of indices of the graspable and pushable objects, respectively. Then, we randomly

choose 30 indices from the multi-set Ig + Ip := {ig1, . . . , igNg , ip1, . . . , ipNp} allowing

duplicates. For each chosen index, we select one action (pushing action if index is in

Ip and pick-and-place action if index is in Ig) through the method described above. The

action sequences for MPC are sampled in the similar manner.

130 Search-for-Grasp: Superquadric Recognition for Mechanical Search

Figure 5.5: The left column shows the simulation and real environments, and in the

right column, objects used in each environment are visualized. In particular, the target

object is marked in red in the simulation; the red-taped can is the target object in the

real experiment.

5.5 Experiments

In this section, we conduct a comparative analysis of the two proposed methods, the

search-and-grasp and search-for-grasp methods, and evaluate both methods to show ro-

bust performance to find and grasp the occluded target object in both simulation and

real-world environments.

Environment. The simulation and real-world experiments share the same robot, the

same RGB-D camera, and the same shelf environment; the simulation experiments are

conducted by the Pybullet simulator. We use the 7-dof Franka Emika Panda robot with

5.5. Experiments 131

a parallel-jaw gripper and an Azure Kinect DK camera sensor looking into the shelf at

a fixed location (See Figure 5.5). The raw input visual observation from the camera is

an RGB-D, which is then converted to point cloud data. We use cylinder-shaped and

cube-shaped objects of various sizes which are visualized in Figure 5.5.

Target object. Throughout the experiments, we restrict our attention to a cylindrical

target object. Considering the rotational symmetry of the target object and the assump-

tion that the target object stands upright, the target pose space X can be reduced to R
2.

We note that if the target object is a box, the whole SE(2) space should be considered

as the target pose space; the experimental results when the target object is a box can

be found in Chapter 5.6.3.

Evaluation metrics. We report the find and grasp success rates separately. If a se-

quence of our actions makes the target visible within 10 time steps, it is considered as

a find-success. If it makes the target not only visible but also graspable and we can

find a collision-free path for taking out the object within 10 time steps, it is considered

a grasp success. Additionally, we measure the average number of actions required to

find or grasp the target.

5.5.1 Simulation Experiments Results

In this section, we evaluate our methods in the simulation experiments and empirically

show that they can find and grasp the fully-occluded target object. The details on sim-

ulation experiment settings are provided below.

Object configuration. To evaluate our method, we have created 180 scenarios for

each number of surrounding objects in {2, 4, 6, 8}, so a total of 720 scenarios; for each

scenario, a random selection (allowing duplicates) is made among the given objects in

Figure 5.5.

132 Search-for-Grasp: Superquadric Recognition for Mechanical Search

F
ig

u
re

5
.6

:
A

n
ex

am
p
le

trajecto
ry

o
f

sim
u
latio

n
m

an
ip

u
latio

n
.

E
ach

co
lu

m
n

sh
o
w

s
th

e
cam

era
in

p
u
t

an
d

actio
n

selectio
n

at
each

tim
e

step
.

In
th

e
sim

u
latio

n
,

su
rro

u
n
d
in

g
o
b
jects

are
b
lu

e
an

d
th

e
targ

et
o
b
ject

is
red

.

5.5. Experiments 133

Table 5.1: Simulation manipulation results

The number of objects

︷ ︸︸ ︷

2 4 6 8

METHOD Find Grasp Find Grasp Find Grasp Find Grasp

O-Search-and-Grasp
Succ. 0.978 0.939 0.939 0.761 0.878 0.622 0.844 0.528

Steps 1.392 1.562 2.178 2.635 2.589 3.473 2.664 3.947

O-Search-for-Grasp
Succ. 0.983 0.928 0.933 0.794 0.900 0.678 0.889 0.578

Steps 1.407 1.647 2.077 2.769 2.377 3.574 2.831 4.125

R-Search-and-Grasp
Succ. 0.983 0.928 0.928 0.789 0.889 0.656 0.878 0.606

Steps 1.362 1.611 2.222 2.739 2.581 3.432 2.981 3.78

R-Search-for-Grasp
Succ. 0.972 0.922 0.933 0.756 0.922 0.672 0.894 0.656

Steps 1.331 1.651 2.196 2.765 2.301 3.281 2.901 3.975

Initial scene setting. We first randomly drop the selected objects on the shelf. Then,

we place the (red) target object on the shelf where it is not visible from the current

camera image. If there is no place to place the target object, or the target object is not

graspable because of the collision of the gripper with the shelf, the scenario is discarded.

Target detection. In the simulation environment, a ground-truth segmentation mask

can be used from the synthetic camera. If a part of the target object is observed for more

than 100 pixels on the camera image (c.f. the resolution of the camera is 1280× 720),

it is considered to have succeeded in finding the target object in that scenario.

We note that there are some scenarios where the target object is not graspable even

with the maximum number of actions, so the maximum average success rate is slightly

lower than 1.

To evaluate our 3D reconstruction-based mechanical search method, and in particular

to see how much recognition error affects the task performance, we also test the cases

where the ground-truth poses and shape parameters of the surrounding objects (not the

134 Search-for-Grasp: Superquadric Recognition for Mechanical Search

target object) are available, and denote them as oracle. In these cases, the the recogni-

tion module is not used and the ground-truth information of the surrounding objects are

directly used for solving optimal control. We put the letter ’O’ in front of the method

name in the oracle experiments, and ’R’ in the experiments using the 3D recognition

(e.g., O-Search-and-Grasp and R-Search-for-Grasp).

Figure 5.6 shows an example of how our recognition-based search-for-grasp method

acts on the simulation experiment. The search-for-grasp method succeeds in finding the

target object in four pushing actions and then makes the target object graspable by per-

forming an additional pick-and-place action. The success rates and the average number

of actions for finding and grasping the target are shown in Table 5.1. First, the per-

formance differences between oracle and recognition are not significant, which means

that the 3D recognition error does not significantly affect performance. Second, search-

for-grasp has no difference in performance from search-and-grasp when the number of

surrounding objects is small, but shows better performance when the number is large.

This suggests that considering graspability is of great help when finding the target.

5.5.2 Real-world Experiments Results

We adopt the R-Search-for-Grasp method for finding and grasping the desired target

object in real-world environment. The details on real-world experiment settings are pro-

vided below.

Object configuration. We have created 5 scenarios for each number of surrounding

objects in {3, 4, 5, 6}, so a total of 20 scenarios; for each scenario, a pre-defined object

set is used according to the number of surrounding objects as shown in Figure 5.8.

Initial scene setting. We put the given surrounding objects and the target object so

that the target object (red cylinder) is not visible in the initial camera view.

5.5. Experiments 135

Figure 5.7: Search-for-grasp real-world manipulation results

Figure 5.8: Pre-defined object set used for real-world experiments.

136 Search-for-Grasp: Superquadric Recognition for Mechanical Search

Table 5.2: Search-for-grasp real-world manipulation results.

Num. Find Grasp

3 5/5 5/5

4 5/5 4/5

5 4/5 2/5

6 3/5 2/5

Target detection. In the 3D recognition process, we segment the observed point

cloud. We first calculate the average RGB value of the points in each segmented point

cloud. Then, we calculate the MSE between these average RGB values and the RGB

of the target object (in this case, [0.7282, 0.1558, 0.2099]), and if there is exactly one

segmented point cloud with MSE smaller than 0.1, the target object is said to be found.

Figure 5.7 shows a real-world manipulation result. The target object is occluded by

the two objects, and the target object is found through three pushing actions. The found

target object is not graspable at t = 3, an additional pushing action is applied to make

the target object graspable.

Failure cases. Table 5.2 shows the manipulation success rates in real-world experi-

ments. A few failure failure cases occur, especially when the number of the surrounding

objects increases. Most of the reasons for failure cases are (i) that there’s no solution

of rearranging the objects in our designed action space (see Chapter 5.4.4) and (ii) that

incorrect 3D recognition causes erroneous updates of existence and graspability maps;

for example, if the recognition model recognizes an object as inaccurately large, the

existence map may be underestimated, i.e., it is decided that f(x) = 0, but the target

object can exist at x ∈ SE(2).

5.6. Additional Experimental Results 137

Figure 5.9: Comparison of search-and-grasp and search-for-grasp methods to find the

target object (yellow cylinder). This figure is a conceptual figure, not the result of im-

plementing the methods.

5.6 Additional Experimental Results

5.6.1 3-Object Toy Experiment

In this experiment, we compare the performance of the two proposed methods, search-

and-grasp and search-for-grasp, and especially highlight the advantages of the search-

for-grasp method. Let consider a situation where a yellow cylindrical target object is

fully occluded by two larger boxes as described in the left of Figure 5.9. The search-

and-grasp method may successfully find the target object by rearranging the two boxes,

but it does not guarantee the target object’s graspability. As illustrated in the middle of

Figure 5.9, the identified object may not have a collision-free robot trajectory for gra-

sping in some cases. Consequently, additional actions would be necessary to manipulate

the environment and make the target object graspable. On the other hand, in the case

of the search-for-grasp method, the target object’s graspability is taken into account in

138 Search-for-Grasp: Superquadric Recognition for Mechanical Search

the searching phase, so the two boxes are rearranged in a way that the target object

becomes not only visible but also graspable as shown in the right of Figure 5.9. In

summary, when the target object is occluded by multiple objects, the search-for-grasp

method can be efficient in terms of the number of actions. To verify this, we design an

additional simulation experiment named 3-object toy experiment as described below.

Object configuration. We have created 200 scenarios in the pybullet simulation

environment with two large cylindrical objects and one small cylindrical target object.

The radius and height of the target cylinder is fixed, and those of two large cylinders

are randomly selected big enough to occlude the target.

Initial scene setting. The position of the camera center and the positions of three

cylindrical objects are on a straight line in the x-y plane so that the target object is

occluded by the other two objects on the shelf. The position of the target object is

fixed, while the (x, y) coordinates of the other objects’ positions are randomly selected

on the straight line.

Target detection. Target detection method is the same with Chapter 5.5.1.

Figure 5.10 shows the mechanical search results by search-and-grasp and search-for-

grasp. In this subsection, we only use recognition-based (i.e., R-search-and-grasp and

R-search-for-grasp). The search-and-grasp method succeeds in finding the target object

in two pick-and-place actions as desired, but when target object is found, it cannot be

grasped due to collision with surrounding objects. So, this method makes the target ob-

ject graspable by performing two additional actions as shown in the left of Figure 5.10.

In the case of the search-for-grasp method, it also succeeds finding the target object in

two pick-and-place actions, and at this time, the target object becomes graspable at the

same time as shown in the right of Figure 5.10. This difference of the number of actions

is due to the difference in whether the graspability of the found object is taken into ac-

count when searching for the object. Although the search-for-grasp method is slightly

5.6. Additional Experimental Results 139

F
ig

u
re

5
.1

0
:

E
x
am

p
le

tr
aj

ec
to

ri
es

o
f

si
m

u
la

ti
o
n

m
an

ip
u
la

ti
o
n

fo
r

R
-s

ea
rc

h
-a

n
d
-g

ra
sp

(L
ef

t)
an

d
R

-s
ea

rc
h
-f

o
r-

g
ra

sp

(R
ig

ht
).

E
ac

h
co

lu
m

n
sh

o
w

s
th

e
ca

m
er

a
in

p
u
t

an
d

ac
ti

o
n

se
le

ct
io

n
at

ea
ch

ti
m

e
st

ep
.

In
th

e
si

m
u
la

ti
o
n
,

su
rr

o
u
n
d
in

g

o
b
je

ct
s

ar
e

b
lu

e
an

d
th

e
ta

rg
et

o
b
je

ct
is

re
d
.

140 Search-for-Grasp: Superquadric Recognition for Mechanical Search

Table 5.3: Manipulation results for 3-object toy experiment.

METHOD Succ. Find Grasp

R-Search-and-Grasp 0.985 2.065 2.919

R-Search-for-Grasp 0.995 2.255 2.497

more computationally expensive than the search-and-grasp method, the search-for-grasp

method can be efficient in terms of number of actions in these situations.

In order to quantitatively verify this fact, we measure (i) the average grasp-success

rate and the average number of actions to (ii) find and (iii) grasp the target object for

the two methods, and the results are shown in Table 5.3. We note that the minimum

number of actions required to find and grasp is 2. The average number of actions to

find is lower for search-and-grasp than for search-for-grasp since the search-and-grasp

method only focuses on finding the target object. On the other hand, the average number

of actions to grasp is lower for search-for-grasp than for search-and-grasp. Unlike the

search-and-grasp methods, the search-for-grasp simultaneously search for a target object

while increasing the probability of grasping the found target object. As a result, this fact

has the effect of reducing the average number of actions. In conclusion, we verify that

the search-for-grasp method can be more efficient than the search-and-grasp method in

terms of the number of actions when the target object is occluded by multiple objects.

5.6.2 Mechanical Search via Only Pushing or Only Pick-and-place

This experiment evaluates the performance of two cases where only one action type

(e.g., pick-and-place or pushing) is allowed, demonstrating that both motions are es-

sential for mechanical search tasks on shelves. Instead of action sampler described in

Appendix 5.4.4, if only push is allowed, the action is sampled only from Ip. If only

5.6. Additional Experimental Results 141

pick-and-place is allowed, the action is sampled only from Ig. We use recognition-based

method in this experiment.

Object configuration. We have created 50 scenarios for each number of surrounding

objects in {4, 8}, so a total of 100 scenarios; for each scenario, a random selection

(allowing duplicates) is made among the given objects.

Initial scene setting Initial scene setting is the same with Chapter 5.5.1.

Target detection. Target detection method is the same with Chapter 5.5.1.

Figure 5.11 shows the mechanical search results by our methods using only pick-

and-place and only pushing. In the first example, using only pushing succeeds in finding

and grasping the target object in one action as desired, but using only pick-and-place

fails since there is no valid pick-and-place action. In the second example, using only

pick-and-place succeeds in finding and grasping in one action, and using only pushing

succeeds in finding the target object but there is no pushing action to move the blue

cylinder to be removed since it becomes close to the wall of shelf. As such, there are

cases where using only pick-and-place and only pushing show different trajectories.

To quantitatively investigate the roles of the pushing and pick-and-place, and the

results are shown in Table 5.4. First, allowing only one type of action degrades the

performance significantly as shown in the table. Specifically, using only pick-and-place

highly degrades the performance of finding the target object compared to the case where

both actions are used, and on the other hand, using only pushing highly degrades the

performance of grasping the target object, even though the success rate in finding is

higher than using only pick-and-place.

This result is because pick-and-place and pushing have different strengths and weak-

nesses. The pick-and-place is efficient in terms of the average number of actions because

it can move the objects farther away, but the actions which can be performed are lim-

ited due to the fewer objects the robot can grasp in a cluttered scene. The pushing is

142 Search-for-Grasp: Superquadric Recognition for Mechanical Search

F
ig

u
re

5
.1

1
:

E
x
am

p
le

trajecto
ries

o
f

sim
u
latio

n
u
sin

g
o
n
ly

p
ick

-an
d
-p

lace
an

d
o
n
ly

p
u
sh

in
g
.

E
ach

co
lu

m
n

sh
o
w

s

th
e

cam
era

in
p
u
t

an
d

actio
n

selectio
n

at
each

tim
e

step
.

In
th

e
sim

u
latio

n
,

su
rro

u
n
d
in

g
o
b
jects

are
b
lu

e
an

d
th

e

targ
et

o
b
ject

is
red

.
(Left)

A
scen

ario
w

h
ere

o
n
ly

p
ick

-an
d
-p

lace
fails

b
u
t

o
n
ly

p
u
sh

in
g

su
cceed

s.
(R

ight)
A

scen
ario

w
h
ere

o
n
ly

p
ick

-an
d
-p

lace
su

cceed
s

b
u
t

o
n
ly

p
u
sh

in
g

fails.

5.6. Additional Experimental Results 143

Table 5.4: Simulation manipulation results for the one-type action experiments.

The number of objects

︷ ︸︸ ︷

4 8

METHOD ALLOWED ACTION Find Grasp Find Grasp

R-Search-and-Grasp

Both
Succ. 0.96 0.84 0.98 0.56

Steps 1.562 2.065 2.102 3.73

Pick-and-Place
Succ. 0.76 0.64 0.6 0.5

Steps 1.5 1.656 2.167 2.96

Push
Succ. 0.92 0.58 0.82 0.58

Steps 2.196 3.793 3.073 4.828

R-Search-for-Grasp

Both
Succ. 1.0 0.88 0.98 0.6

Steps 1.74 2.543 1.653 3.846

Pick-and-Place
Succ. 0.76 0.66 0.64 0.46

Steps 1.395 1.667 1.938 3.043

Push
Succ. 0.9 0.58 0.78 0.6

Steps 2.444 3.483 3.667 4.733

better than pick-and-place for finding target objects because the robot can manipulate

more objects than pick-and-place, but because the robot can’t move the objects that far,

it requires a higher number of actions because the can’t move the objects that far. In

summary, both pick-and-place and pushing are required to find the target and grasp the

target object.

5.6.3 Mechanical Search with Box Target Object

This experiment evaluates the performance of our methods for mechanical search tasks

with a box target object. In this case, the target pose space should be X = SE(2), i.e.

position (x, y) of the target box on the shelf and its z-axis angle θ as orientation. We

144 Search-for-Grasp: Superquadric Recognition for Mechanical Search

only use recognition-based method in this experiment.

Object configuration. We have created 40 scenarios for each number of surrounding

objects in {4, 8}, so a total of 100 scenarios; for each scenario, a random selection

(allowing duplicates) is made among the given objects. The target object is replaced

with a box shape instead of a cylinder.

Initial scene setting Initial scene setting is the same with Chapter 5.5.1.

Target detection. Target detection method is the same with Chapter 5.5.1.

Figure 5.12 shows the mechanical search results by search-for-grasp on the task of

the box target object. The search-and-grasp method succeeds in finding the target object

in three pick-and-place actions and succeeds in grasping the target object in additional

one pick-and-place action. Table 5.5 shows the performance of our methods with the

box target object. Compared to the cylinder target object case, the grasp success rate is

lower when the number of objects is 4. This is because the approach direction of the

grasping trajectory is limited to one in the case of the box as shown in the Figure C.5;

we note that the cylinder can be grasped in any direction due to rotational symmetry.

However, when the number of objects are large (i.e., the number of objects is 8), the

box target object case shows similar performance to the cylinder target object case. This

is because the advantage of having various grasping approach directions of cylinders is

lost in highly cluttered environment. In summary, we conclude that our algorithm also

works on the target pose space of SE(2) on the box target object experiment.

5.6.4 Ablation Study on Hyperparameter α

This experiment evaluates the performance of our methods for mechanical search tasks

concerning the hyperparameter α. To comprehend the role of α, we revisit the objective

5.6. Additional Experimental Results 145

Figure 5.12: An example trajectory of simulation manipulation for R-search-for-grasp

for the box-shaped target object. Each column shows the camera input and action se-

lection at each time step. In the simulation, surrounding objects are blue and the target

object is red.

Table 5.5: Simulation manipulation results for the box target object

The number of objects

︷ ︸︸ ︷

4 8

METHOD Find Grasp Find Grasp

R-Search-and-Grasp
Succ. 0.925 0.775 0.825 0.525

Steps 1.568 3.323 2.394 4.81

R-Search-for-Grasp
Succ. 0.95 0.7 0.85 0.6

Steps 1.652 3.286 2.412 5.167

146 Search-for-Grasp: Superquadric Recognition for Mechanical Search

function of our optimal control:

min
a1,...,aT

∑
x∈X

fT (x) + αfT (x)(1− gT (x)). (5.6.11)

Figure 5.13 depicts a graph illustrating the find and grasp success rates of our R-Search-

for-Grasp algorithm concerning different values of α. Initially, discerning major trends

proves challenging due to the interdependence between finding and grasping. Notably,

the grasp success rate inherently relies on the find success rate, as successful grasps

are a subset of successful finds. Moreover, candidate target poses where the existence

function equals 1 (i.e., f(x) = 1) often imply occlusion by other objects, resulting in

the graspability function of 0 (i.e., g(x) = 0) in most cases. Consequently, minimizing

the second term in the objective function can somewhat aid in finding the target object

and thereby may reduce the first term. As such, identifying significant trends becomes

challenging. Nonetheless, the critical insight from this graph reveals that (i) excessively

small α values lead to decreased success rates in grasping the target object, particularly

evident when many objects are present on the shelf (i.e., 6 or 8), and (ii) higher α

values indicate a certain level of algorithmic effectiveness.

5.7 Conclusion

We have proposed a general mechanical search and grasping framework on cluttered

shelves and implemented practical algorithms, the search-and-grasp and search-for-grasp,

by using the pre-trained 3D object recognition model. We use pushing and pick-and-

place actions to rearrange the obstructing objects and to make the target object visible

and graspable. Our method does not rely on specialized tools and is not restricted to the

suction gripper as the previous studies, but rather uses the standard two-finger gripper

and 6-DoF grasping for pick-and-place actions. We have confirmed that our proposed

5.7. Conclusion 147

Figure 5.13: Find and grasp success rates of R-Search-for-Grasp according to α.

method works well in both simulation and real-world shelf environments.

Limitations and Future Directions First, since our method considers single super-

quadric shaped objects, it is not trivial to apply it directly to more complex objects.

One future direction to extend our method is to exploit the researches that attempt to

represent the complex objects as multiple superquadrics [102, 64, 103, 105]. Even if

each object is represented with several superquadrics, we can compute the existence

function and the graspability function in the same manner. Second, our method highly

depends on the 3D recognition model, inaccurate recognition can cause several prob-

lems. There can be robot-object collisions because we check the collision between the

robot action and recognized objects. Moreover, some inappropriate action decisions can

be made due to erroneous existence map estimation. To overcome the limitation, addi-

tional information such as RGB images should be utilized to enhance the recognition

performance [128, 157]. Lastly, since the graspability of the object is checked using

only a limited number of grasping trajectories (see Appendix C.3), there can be cases

148 Search-for-Grasp: Superquadric Recognition for Mechanical Search

where it is determined that the object cannot be grasped even if there is a grasping tra-

jectory. As a research direction to overcome this, the graspability can be checked with

more diverse trajectories quickly using a network-based planner [158].

6
Conclusion

6.1 Summary

This thesis has demonstrated that numerous challenges encountered in object manipula-

tion can be effectively addressed using shape recognition methods. The crucial insight

is that 3D reasoning of a scene from visual observations, particularly through 3D shape

recognition using (deformable) superquadrics, significantly simplifies and enhances the

handling of various challenging vision-based object manipulation problems. Building on

this perspective, we have developed shape recognition-based object manipulation algo-

rithms for grasping unknown objects, learning pushing dynamics models for tabletop ob-

ject manipulation, and conducting mechanical searches in cluttered shelf environments.

The main contributions of each chapter are summarized as follows.

• DSQNet: Deformable Superquadric Network for Unknown Object Grasping

We have introduced a novel shape recognition-based grasping method that inte-

grates a wider range of shape templates, specifically deformable superquadrics,

149

150 Conclusion

into a deep learning framework. This method is encapsulated in the Deformable

SuperQuadric Network (DSQNet), proficient at recognizing complete object shape.

In particular, we employ a supervised learning framework enabling DSQNet to

generate these eight parameters and pose of the deformable superquadric, align-

ing it with the complete shape of the object, including occluded parts. We have

discovered that these deformable superquadrics can represent a broad array of

shapes using only eight continuous parameters. Additionally, we capitalize on the

benefit of closed-form surface equations for the efficient computation of point-

to-surface distances, which is essential for precise fitting. We also propose an

algorithm that effectively and efficiently generates grasp poses using these defor-

mable superquadric shapes. Our findings demonstrate that DSQNet surpasses ex-

isting shape recognition-based methods in terms of both speed and accuracy in

object shape recognition. Furthermore, our method outperforms others in grasping

success rates, owing to its precise shape recognition capabilities. Remarkably, our

recognition-based approach achieves grasping success rates comparable to those

of widely-used end-to-end methods, while it requires minimal training data and

offers adaptability to various types of grippers.

• SQPDNet: Superquadric Pushing Dynamics Model for Pushing Manipulation

We have extended the advantages of shape recognition to non-prehensile manip-

ulation, with a particular emphasis on learning pushing dynamics models. A sig-

nificant benefit of incorporating shape recognition in this domain is the natural

ability to define an SE(2)-equivariant pushing dynamics model. This insight has

led us to develop a unique neural network architecture, the SuperQuadric Push-

ing Dynamics Network (SQPD-Net), which inherently embodies the equivariance

property. A central idea of our model is to utilize explicit relationships between

6.1. Summary 151

the poses of objects and the pushing action. This methodology acknowledges the

symmetry present in physical systems, greatly enhancing the model’s ability to

generalize. Our findings indicate that our shape recognition-based model outper-

forms existing vision-based pushing dynamics models, especially with the inte-

gration of SE(2)-equivariance. The effectiveness of our model is further validated

in its application to model-based optimal controls for various pushing manipula-

tion tasks. This is corroborated by results from both simulations and real-world

experiments, highlighting the practicality and efficiency of our approach.

• Search-for-Grasp: Superquadric Recognition for Mechanical Search

Lastly, we address the practical yet challenging task of mechanical search on clut-

tered shelves using a shape recognition model. This task entails finding and gra-

sping a specific target object, which is occluded by other objects and initially

invisible by vision sensors, on a cluttered shelf. The geometric configuration of

the shelf, permitting only frontal visual observations and restricting the manipula-

tor’s workspace, further compounds the task’s complexity. To overcome this chal-

lenge, we have utilized the shape recognition models, particularly the superquadric

recognition model. This model facilitates quick and efficient reasoning about the

potential poses of the occluded target object by enabling rapid computations for

various tasks such as depth image rendering and collision checking. Additionally,

we have incorporated the shape recognition-based prehensile and non-prehensile

manipulation techniques developed in earlier chapters. This integration allows the

robot to effectively and safely find the target object. Our method’s efficacy has

been confirmed through both simulation and real-world experiments, proving its

capability to successfully identify and grasp target objects using a standard two-

finger robot gripper. Importantly, our approach demonstrates robustness even in

152 Conclusion

the presence of the typical noise in vision sensor data in real-world scenarios.

6.2 Future Work

There are several potential avenues for extending our current shape recognition-based

prehensile and non-prehensile manipulation methods. While some of these extensions

have been directly referenced in the preceding chapters, here we highlight key directions

and open problems for future research that we believe warrant further investigation.

• More accurate and effective recognition model for object manipulation

In this thesis, we propose object manipulation methods using superquadric-based

(Chapters 4 and 5) and deformable superquadric-based (Chapter 3) shape recogni-

tion models. A natural question that arises is whether deformable superquadrics

can adequately represent the diversity and complexity of many objects. Several

studies have been conducted to recognize full 3D shapes from partial observa-

tions, such as depth images, using explicit object representations like occupancy

grids [51], point clouds [52], or meshes [53]. Furthermore, recent works have ex-

plored learning implicit 3D representations of objects using neural implicit func-

tions [55, 56, 57, 58]. While these representations could potentially replace defor-

mable superquadrics (an interesting extension of our method), deformable super-

quadrics are still highly effective for object manipulation, not just recognition. For

instance, they enable rapid generation of grasp poses, are efficient in computations

related to various manipulations such as collision checking, and most importantly,

provide interpretable information by abstracting objects into their basic parts. This

capability makes them highly advantageous for the range of calculations required

in various object manipulation.

6.2. Future Work 153

One method to enhance the expressiveness of object shapes, while adhering to our

core philosophy, is the incorporation of a more diverse set of shape primitives,

particularly superquadrics. In our work, we primarily utilize superellipsoids (al-

though superparaboloids are briefly discussed in Chapter 3.7), but there are other

viable options, such as superparaboloids and supertoroids, as outlined in Chap-

ter 2. Specifically, superparaboloids are capable of expressing a variety of highly

concave shapes, including dishes, bowls, and the heads of wine glasses. Super-

toroids, on the other hand, can represent a wide range of shapes with cavities,

ranging from tori to cylindrical shells. By employing an appropriate deformation

model, it becomes possible to represent an even broader array of objects. The ex-

ploration of more diverse superquadric primitives as an extension of our work is

an intriguing prospect for future research.

In addition to utilizing more diverse and expressive shape primitives, the perfor-

mance of our recognition model could be significantly improved for a broader

range of complex objects by incorporating publicly available, large-scale 3D datas-

ets such as ShapeNet [92]. However, as outlined in Chapter 3, our current met-

hod relies on primitive-shaped part segmentation labels, which are challenging

to obtain. Consequently, direct utilization of raw public datasets presents certain

difficulties. Future work could explore developing a model that does not require

part-segmentation supervision and is capable of fitting multiple shape primitives

to given ground-truth object shapes. Recent research has made progress in repre-

senting objects as sets of superquadrics when their full shapes are available [102,

103, 104, 105]. In our scenario of vision-based object manipulation, which typi-

cally involves only partial observation of unknown objects, directly applying the

aforementioned studies is not straightforward. The prospect of recognizing objects

154 Conclusion

as sets of deformable superquadrics, without relying on part segmentation labels

and from only partial observations, presents a promising research direction.

• Object manipulation methods considering physical object properties

While we currently propose vision-based object manipulation methods that do not

take into account the physical properties of objects, in practice, considering these

properties is crucial for successful manipulation. For instance, when generating

grasp poses using only the recognized shape of an object (e.g., assuming a uni-

form mass distribution), there’s a risk that the grasping point may be far from

the object’s center of mass. This is particularly evident in objects like hammers,

mugs, or dumbbells, where ignoring the mass distribution can lead to unstable

grasping. Similarly, in pushing manipulation, predicting dynamics becomes chal-

lenging when dealing with objects that have non-uniform mass distributions, as

varying distributions result in different motions. Moreover, during pushing manip-

ulation that involves interaction between objects, the absolute values of mass and

friction coefficients significantly impact the motion of the objects. Understanding

the physical properties of objects would allow us to (i) identify grasp poses that

can support the object’s weight, taking into account factors like density or the

center of mass, and (ii) enhance the accuracy of dynamics models in learning

object motions. However, estimating these physical properties using only a vision

sensor remains a significantly challenging task.

To address this challenge, several studies have proposed methods to ascertain the

physical properties of unknown objects through multi-step dynamic interactions.

One approach involves learning abstract representations (or features) of physical

6.2. Future Work 155

Figure 6.1: SE(2)-equivariant pushing dynamics neural network architecture considering

physical object properties for an i-th object.

object properties [126]. Utilizing data from vision sensors, this study employ a re-

current structure to accumulate information from multiple robot-object or object-

object interactions. This enables the model to more effectively infer and encode

the objects’ physical properties over time. By operating without an explicit physics

model, the system is not only capable of exploring various types of interactions

but also able to infer and separate physical properties from these interactions.

Building on this concept, an interesting research direction is to develop a modi-

fied pushing dynamics model (SQPDNet) that incorporates physical properties, as

illustrated in Figure 6.1. This new model processes input information about the

poses and shapes of objects, along with physical property features fi’s of each

object. By suitably updating these features through multi-step interactions and ap-

propriate recurrent structures, the model could be capable of considering diverse

object mass distributions and accordingly predicting accurate motions of the ob-

jects. While these methods show effectiveness with only vision sensor data, a

notable challenge lies in generalizing the physical property features learned from

one task (e.g., pushing manipulation) to other tasks (such as grasping).

156 Conclusion

Figure 6.2: Recognized shapes via deformable superquadrics and their mass distribu-

tions.

Another approach involves the use of differentiable simulators to determine ex-

plicit physical properties of objects, including mass distribution and friction coeffi-

cient, as explored by [159]. Through multi-step dynamic interactions, they initially

calculate the analytical gradient of the physical simulation error in relation to the

mass and friction distributions, using a cuboid representation. The analytical gra-

dients are then used to identify physical properties by analyzing videos of their

sliding motions. Subsequently, the identified physical properties are applied to exe-

cute dynamic non-prehensile manipulations, such as sliding. Although this method

allows the explicit physical properties to be directly utilized for various manipula-

tion tasks, it currently operates under the assumption that the objects’ shapes are

known. To estimate the physical properties of completely unknown objects, shape

recognition must be conducted in conjunction with the estimation process. In this

context, our deformable superquadric-based DSQNet presents a promising oppor-

tunity. An interesting avenue for future research would be to develop a method

that employs a set of deformable superquadrics to recognize object shapes and

simultaneously estimate the mass density and friction coefficient of each superq-

uadric through multi-step dynamic interactions, as shown in Figure 6.2.

6.3. Concluding Remark 157

• Using multi-modal sensor beyond using only vision sensor

The vision sensor is a critical component for robots handling unknown objects.

However, similar to how humans rely on multiple senses for complex, dexter-

ous manipulation, robots may also require multi-modal sensors for more sophis-

ticated and intricate tasks. Tactile sensors, for instance, can significantly aid in

precise object grasping, especially when vision sensor data is noisy [78, 100].

They are particularly useful for accurately controlling the robot while handling

of fragile items, such as eggs, or manipulating deformable objects, like dough

and clothes [160, 161]. Moreover, most robotic arms are equipped with built-in

force-torque sensors, or these can be mounted on their end-effectors. These sen-

sors are beneficial for manipulating objects with diverse mass-inertia properties

and are crucial for discovering the physical properties of objects through multi-

step interactions, as previously mentioned [159]. Force-torque sensors may enable

robots to better adapt to new objects in dynamic manipulation tasks, such as slid-

ing [162, 163] or tossing [164]. Additionally, some studies have incorporated au-

dio data to further enhance a robot’s perception in various tasks, including bin

packing and water pouring [165]. Exploring the use of these multi-modal sensors

in conjunction with the shape recognition-based object manipulation methods pro-

posed in this thesis presents another exciting avenue for future research.

6.3 Concluding Remark

Robotic object manipulation methods are increasingly vital, especially in logistics and

household settings. However, relying solely on vision sensor information to manipulate

various unknown objects across diverse tasks often proves impractical due to numer-

ous constraints. We assert that our contribution holds significance for practitioners by

158 Conclusion

presenting robust methods capable of overcoming these practical challenges. Our suite

of shape recognition-based object manipulation methods outlined in this thesis provides

potential methods to address a broader spectrum of unknown objects and manipulation

tasks. Moreover, these methods enable for further advancements, enabling robots to un-

dertake more dynamic manipulation tasks than previously feasible.

A
Appendix: DSQNet

This section describes implementation details of our algorithm. We first describe the

synthetic dataset used for training and evaluation of the recognition stage, followed by

preprocessing of the point cloud, training the segmentation network and DSQNet, and

hardware setup used for real-world grasping experiments.

A.1 Synthetic Data Generation

The recognition stage consists of the segmentation network and DSQNet. For training

and evaluation purposes, we generate synthetic datasets as shown in Figure A.1 (object

dataset for the segmentation network and primitive dataset for DSQNet).

The synthetic objects are generated to match a variety of everyday objects. Inspired

by YCB datasets [87], we define six primitive types: box (B), ellipsoid (E), cylinder

(CY), cone (C), truncated cone (TC), and truncated torus (TT). From these six primitives

we generate twelve object types: six single-primitive shapes, and six multi-primitive

shapes (bottle, mug, dumbbell, hammer, padlock, and screwdriver). The primitives and

159

160 Appendix: DSQNet

object types are shown in Figure A.1.

In detail, Figure A.2 shows the synthetic dataset configurations, consisting of (i)

primitive types with the shape parameters required to define the shape, and (ii) object

types with the assembly configuration of the shape primitives to construct each object.

For each type in the primitive dataset, we randomly sample 100 different tuples of shape

parameters within a predefined range of values; the range of parameters are shown in

Table A.1. In the case of object types (i.e., multi-primitive shapes), we similarly ran-

domly sample 100 shape parameters of all used primitives that satisfy prescribed shape

continuity conditions. The ranges of the shape parameters and the conditions for gen-

erating the objects are described in Table A.2.

After determining the synthetic object types, we construct the object dataset and

primitive dataset used for training and evaluation. The object dataset contains a total of

1200 object shapes: 100 objects with different parameters for each object type. For each

object, a partially observed point cloud with 1000 points is obtained from 16 different

camera viewpoints. The segmentation label for each point is annotated according to

the primitive to which the point belongs. The primitive dataset includes a total of 800

primitive shapes: 100 primitives with different parameters for each primitive type with

the exception of the truncated torus (TT). We use a total of 300 primitives for TT,

resulting in a total of 800 training primitives for the six object types. When trained with

a total of 600 primitive shapes (i.e., 100 shapes are also used for TT), DSQNet always

predicts values for the bending parameter b that are close to zero (the lower bound for

b is set to 0.01). This finding can be explained with an imbalance in the training data,

in which the objects representable by positive b are relatively scarce compared to those

representable by zero b. To address this training data imbalance, we use additional 200

primitives for TT. For each primitive, we obtain 16 paired data from different camera

viewpoints: (i) a partially observed point cloud with 300 points, and (ii) the ground-truth

A.1. Synthetic Data Generation 161

Figure A.1: Types of synthetic objects (primitive types and object types) and dataset

generated from the synthetic objects (primitive dataset and object dataset).

162 Appendix: DSQNet

Figure A.2: Synthetic dataset configurations: primitive types with shape parameters (up-

per row), and object types with assembly configuration of the shape primitives (lower

row).

A.2. Training Segmentation Network and DSQNet 163

Table A.1: Range of parameter values for primitive dataset

Primitives Parameters

B w ∈ [0.02, 0.3], d ∈ [0.02, 0.3], h ∈ [0.02, 0.3]

E a ∈ [0.03, 0.07], b ∈ [0.03, 0.07], c ∈ [0.03, 0.07]

CY r ∈ [0.01, 0.075], h ∈ [0.03, 0.3]

C r ∈ [0.02, 0.07], h ∈ [0.03, 0.15]

TC R ∈ [0.02, 0.1], r ∈ [0.02, 0.8R], h ∈ [0.02, 0.3]

TT r ∈ [0.01, 0.015], R ∈ [0.02, 0.075], c ∈ [π3 ,
2π
3]

point cloud with 1500 points sampled uniformly from the ground-truth shape. Examples

from the primitive dataset and object dataset are shown in Figure A.1.

We exclude data whose partially observed point cloud consists of a single plane,

since the lack of three-dimensional information makes full shape estimation difficult.

Consequently the primitive dataset and the object dataset respectively contain a total of

11,998 and 17,136 items, with each dataset divided into 90%/10% train and test sets.

To bridge the gap between the synthetic data and real-world vision sensor data,

noise is added to each sample point x of the partially observed point cloud according

to x �→ x + mv, where v is uniformly sampled on the unit sphere and m is sampled

from a zero-mean Gaussian distribution with standard deviation 0.001.

A.2 Training Segmentation Network and DSQNet

For the segmentation network, we use the same architecture and loss function used

in [72] for DGCNN. Since the main purpose is to separate the point cloud, the network

should learn permutation-invariant segmentation labels, so the loss function should be

invariant to prediction permutations. To achieve this, we first find a bipartite matching

164 Appendix: DSQNet

Table A.2: Range of parameter values for object dataset

Objects Prim. Parameters

Bottle

CY1 r1 ∈ [0.02, 0.07], h1 ∈ [0.06, 0.15]

TC
R = r1, r ∈ [0.01, 0.04],

h ∈ [0.02, 0.1]

CY2 r2 ∈ [r, 0.02], h2 ∈ [0.01, 0.04]

Hammer
CY1 r1 ∈ [0.025, 0.06], h1 ∈ [0.09, 0.2]

CY2 r2 ∈ [0.012, 0.02], h2 ∈ [0.05, 0.3]

Mug

CY r ∈ [0.03, 0.06], h ∈ [0.08, 0.15]

TT
r ∈ [0.003, 0.01], R ∈ [0.03, 0.05],

c ∈ [1.27, 2.09]

Dumbbell

CY1 r1 ∈ [0.02, 0.04], h1 ∈ [0.02, 0.05]

CY2 r2 ∈ [0.012, 0.018], h2 ∈ [0.09, 0.11]

CY3 r3 = r1, h3 = h1

Padlock

B
w ∈ [0.015, 0.03], d ∈ [0.03, 0.045],

h ∈ [0.04, 0.06]

TT
r ∈ [0.003, 0.005], R ∈ [0.01, 0.02],

c ∈ [1.37, 1.77]

Screwdriver
CY1 r1 ∈ [0.0025, 0.004], h1 ∈ [0.08, 0.12]

CY2 r2 ∈ [0.01, 0.02], h2 ∈ [0.06, 0.1]

A.2. Training Segmentation Network and DSQNet 165

Figure A.3: Three predictions of segmentation labels, ground-truth labels, and the bi-

partite matching between prediction and ground-truth labels.

between ground-truth and prediction segmentation labels using the Hungarian matching

algorithm [166], and then compute the usual segmentation loss between the matched

labels. This makes the loss function permutation-invariant, and ensures that the network

can properly separate the point cloud.

Figure A.3 provides a more conceptual explanation of the paragraph. Each color

indicates the segmentation label; for example, the ground-truth labels consist of labels

{0, 1, 2}. As shown in the figure, the partially observed point cloud is segmented in

three prediction ways (P1, P2, P3), all of which are the desired results for the segmen-

tation network of our framework. P1’s segmentation labels exactly match the ground-

truth labels. The labels for P2 and P3 do not exactly match the ground-truth labels, but

they still are the right solution. To learn permutation-invariant segmentation labels in

this way, a loss function that is permutation-invariant to the prediction must be used.

For P2 and P3, there exists a bipartite matching between prediction and ground-truth

166 Appendix: DSQNet

labels as shown in the lower part of Figure R1. As such, by first finding such a bipar-

tite matching (this is called Hungarian matching), and calculating the segmentation loss

between the matched labels, a permutation-invariant loss can be achieved.

We train the segmentation network and DSQNet with the object dataset and primi-

tive dataset, respectively. We train the segmentation network with point clouds consist-

ing of 1000 data points, and DSQNet with point clouds consisting of 300 data points.

During inference, point clouds are preprocessed to match these numbers; a detailed de-

scription of these methods are provided in the next section. To optimize both networks,

we use ADAM [167] with a learning rate of 0.001 and batch size of 16. DSQNet and

the segmentation network are trained up to 3M and 1.3M iterations, which take approx-

imately 46.5 hours and 41 hours on RTX3090, respectively.

B
Appendix: SQPDNet

B.1 Details for SE(2)-Equivariant Dynamics Model

B.1.1 Pose Decomposition

In the manuscript, we introduce an object pose decomposition method that decomposes

an object pose T ∈ SE(3) to a projected pose to the table denoted by C ∈ SE(3) and

the remaining rigid-body transformation U ∈ SE(3) such that T = CU as shown in

the left of Figure B.1.

To achieve this, we first calculate the projection matrix U−1 as shown in the right

of Figure B.1. The projection matrix is decomposed as M1M2, where M1 ∈ SE(3)

is the rotation matrix that aligns the z-axis of the object pose with the z-axis of the

base frame and M2 ∈ SE(3) is the translation matrix that projects the z-axis-aligned

frame to the table surface. If M1M2 is calculated, we can obtain U = (M1M2)
−1 and

C = TM1M2 accordingly.

To calculate M1, we follow the following steps. The vector z and z0 is the z-axis

167

168 Appendix: SQPDNet

vector of the base frame T0 and object frame T expressed in the base frame T0 (e.g.,

z0 = (0, 0, 1)T). First, we calculate the inner product and cross product between z and

z0 to obtain the following results:

cosφ = z · z0, sinφ = ||z× z0||, w =
z× z0

||z× z0|| ,

where w is the rotation axis expressed in T0 and φ is the rotation angle; φ can be

obtained by φ = atan2(sinφ, cosφ). Then the matrix M1 is of the form

M1 =

⎡
⎣exp([R−1w]φ) 0

0 1

⎤
⎦ , (B.1.1)

where R ∈ SO(3) is the rotation matrix part of T, the bracket [·] : R3 → so(3) is

the skew-symmetric operation, and exp : so(3) → SO(3) is the exponential map from

rotation vector so(3) to rotation matrix SO(3). In other words, M1 rotates the frame

T by φ with the rotation axis R−1w which is the axis of the rotation expressed in T.

The matrix M2 is simply of the form

M2 =

⎡
⎣I3 tz

0 1

⎤
⎦ , (B.1.2)

where tz = (0, 0,−tz) ∈ R
3. We note that (i) M1 and M2 are uniquely defined for

given T, (ii) the projected transformation matrix C = TM1M2 is of the form

C =

⎡
⎣Rot(ẑ, θ) txy

0 1

⎤
⎦ , (B.1.3)

where Rot(ẑ, θ) ∈ SO(3) is a 3 × 3 rotation matrix for rotations around z-axis and

txy = (tx, ty, 0) ∈ R
3, and (iii) given a new object frame T′ = CaT (Ca has the form

of Equation (B.1.3)) and T = CU, the frame is uniquely expressed by T′ = C′U

where C′ = CaC.

B.1. Details for SE(2)-Equivariant Dynamics Model 169

Figure B.1: Object Pose Decomposition.

B.1.2 Proof for Equivariance

Proposition B.1. A pushing dynamics model f = {fi}Ni=1 proposed in Section 2 is

SE(2)-equivariant, i.e., given the inputs and outputs

{T′
i}Ni=1 = f({(Ti,qi)}Ni=1, (p,v)), (B.1.4)

and for all rigid-body transformations that have the following form

C =

⎡
⎣Rot(ẑ, θ) txy

0 1

⎤
⎦ , (B.1.5)

where Rot(ẑ, θ) is a 3 × 3 rotation matrix for rotations around z-axis and txy =

(tx, ty, 0) ∈ R
3, the model satisfies

{CT′
i}Ni=1 = f({(CTi,qi)}Ni=1, (Rot(ẑ, θ)p+ txy,Rot(ẑ, θ)v)). (B.1.6)

Proof. It is enough to show that one element fi is SE(2)-equivariant.

Since CT′
i = (CTi)δTi, the claim that “fi is SE(2)-equivariant” is equivalent to

the claim that “δTi is invariant to the arbitrary transformation C”. This claim suffices

to show that the network inputs are invariant to the transformation C. Below is a de-

scription of whether each input is invariant. We note that when Ti is decomposed to

170 Appendix: SQPDNet

Ti = CiUi, the frame CTi is also decomposed to CTi = (CCi)Ui from the property

(iii) above.

Action. Through a series of calculations, we below confirm that the term for the

action is invariant.

(CCi)
−1(Rot(ẑ, θ)p+ txy,Rot(ẑ, θ)v)

= C−1
i C−1(Rot(ẑ, θ)p+ txy,Rot(ẑ, θ)v)

= ...

= C−1
i (p,v)

Ego. The frames Ui are invariant.

Scene. Since (CCi)
−1(CTj) = C−1

i Tj for j = 1, ..., N, j �= i, the terms for the

surrounding objects are also invariant.

In conclusion, δTi is invariant to the arbitrary transformation C, so fi is SE(2)-

equivariant. Therefore, the pushing dynamics model f = {fi}Ni=1 described in Section

2 is SE(2)-equivariant. �

B.2 Details for Object Shape and Pose Recognition

The goal of the object shape and pose recognition is to design an algorithm that takes

a partial point cloud of the objects in the scene P ⊂ R
3, observed from a (synthetic or

real-world) depth camera, as input and outputs the superquadrics {qi,Ti}Ni=1, where qi

is the shape parameter, Ti ∈ SE(3) is the pose, and N is the number of the objects.

We note that a noise is added to each point x ∈ P – in detail, x �→ x+mv where v is

uniformly sampled on S
2 and m is sampled from a Gaussian with zero-mean and stan-

dard deviation 0.001 – to bridge the sim-to-real gap on vision sensor data as described

in [124, 125]. To achieve this goal to design the algorithm, we first segment a partially

B.2. Details for Object Shape and Pose Recognition 171

observed point cloud P into a set of object point clouds {Pi}Ni=1, then convert them

into superquadric representations qi and Ti.

From the raw vision sensor data P ⊂ R
3, the table points are discarded through

plane fitting and then up/down-sampled to 2048 points. In the other words, the partially

observed point cloud P is processed to P = {xj ∈ R
3}nj=1, where n = 2048.

Point cloud segmentation. We use the same architecture and loss function used in

[72]. Since our purpose is just to separate the point cloud, the network should learn

permutation-invariant segmentation labels, so the loss function should be invariant by a

permutation of prediction. To achieve this, we first find a bipartite matching between

ground-truth and prediction segmentation labels using the Hungarian algorithm [166],

then compute the usual segmentation loss between the matched labels. This makes the

loss function permutation-invariant, and guarantees that the network can separate the

point cloud properly. The trained segmentation network separates the point cloud P
into several object point clouds {Pi}Ni=1.

Superquadric recognition. Our remaining goal is to convert each segmented point

cloud Pi to superquadric representation qi and Ti. We first construct the input rep-

resentation using not only the segmented point cloud Pi but also surrounding point

cloud P1, · · · ,Pi−1,Pi+1, · · · ,PN . In detail, we concatenate 1 after each segmented

point xj ∈ Pi (i.e., xj = (x, y, z) �→ (x, y, z, 1)), and 0 after each surrounding point

xj ∈ P\Pi. We denote this newly created 4-dimensional point from a point xj ∈ R
3

as xs,j ∈ R
4, and denote the set of all these points as Ps,i = {xs,j ∈ R

4}nj=1; the set

Ps,i still has n points.

Then, inspired from [64], we design a neural network that takes the point cloud

Ps,i = {xs,j ∈ R4}nj=1 as input and outputs the superquadric parameter qi and its

pose Ti that best represents the full object shape as shown in Figure B.2. The net-

work consists of (i) the EdgeConv layers [72] with latent space dimension (64, 64,

172 Appendix: SQPDNet

Figure B.2: Superquadric Recognition network. The red dots are the points with label

1 and the black dots are the points with label 0 in the partially observed point cloud.

128, 256) and max pooling operator to produce a global feature vector from Ps,i in

a permutation-invariant manner and (ii) four fully-connected layers (MLP) with latent

space dimension (512, 256) (with LeakyRelu nonlinearities) to obtain the superquadric

parameter {a1, a2, a3, e1, e2} and the pose T = [R; t] from the extracted global feature.

Especially, each MLP outputs (i) translation vector t ∈ R
3, (ii) quaternion vector r ∈ S

3

representing the rotation matrix R ∈ SO(3), (iii) size parameters a = (a1, a2, a3) ∈ R
3,

and (iv) shape parameters e = (e1, e2) ∈ R
2; the values e1 and e2 are bounded in

[0.2, 1.7] since the superquadric equation diverges when e1 and e2 goes to zero and

shows too complex shapes when e1 and e2 become large.

For the predicted superquadric to fit well with the ground-truth shape, the loss func-

tion should also be designed to be the difference between the prediction and the ground-

truth object shapes. For ground-truth shape, we uniformly sample the points from the

surface of the object by Pg,i = {xg,j ∈ R
3}ng

j=1, where ng = 512, and we call Pg,i

the ground-truth point cloud of the i’the object. Then we use the distances from the

B.3. Details for SQPD-Net 173

ground-truth point cloud to the predicted superquadric as the loss function. The dis-

tance form is from [84] which is defined as follows. Only in this Appendix C.1, the

notation for S is abused as follows:

S(x, y, z) =

(∣∣∣∣ xa1
∣∣∣∣

2
e2

+

∣∣∣∣ ya2
∣∣∣∣

2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣

2
e1

, (B.2.7)

Then, the distance δ between a point x0 ∈ R
3 and a superquadric surface S(x)−1 = 0

is

δ(x0, S) = ||x0||
∣∣∣1− S− e1

2 (x0)
∣∣∣ , (B.2.8)

where ‖ · ‖ denotes the Euclidean norm. Accordingly, the loss function is defined as:

L =
1

ng

ng∑
j=1

δ2(T−1xg,j , S), (B.2.9)

where S is defined by the superquadric parameters {a1, a2, a3, e1, e2} and T is its pose.

B.3 Details for SQPD-Net

SuperQuadric Pushing Dynamics Network (SQPD-Net) has the structure of SE(2) equiv-

ariant pushing dynamics model described in Section 2. The detail of the network ar-

chitecture is shown in Figure B.3. The input dimensions are as follows: (i) the planar

pushing action C−1
i (p,v) is represented by a 5-dimensional vector where the start point

is p ∈ R
3 and the direction v is represented by (cos θ, sin θ) ∈ R

2 where θ is the push-

ing direction in the x-y plane, (ii) the i’the object (Ui,qi) is a 12-dimensional vector

where Ui ∈ SE(3) is expressed by 7-dimensional (3-dimensional translation and 4-

dimensional rotation quaternion) and qi ∈ R
5, and (iii) the surrounding objects C−1

i Tj

for j = 1, ..., N, j �= i is also 12-dimensional similar to (ii).

Action encoder, ego encoder, and scene encoder consist of the shallow MLP lay-

ers with latent space dimension (64, 128) and output feature dimension 256; for scene

174 Appendix: SQPDNet

Figure B.3: Detail network architecture of SQPD-Net.

encoder, an additional MLP layer with latent dimension (256, 256) is also included.

After the three feature vectors are obtained from the inputs, they are concatenated and

a 768-dimensional global feature is obtained. The global feature then passes through

the last MLP layers with size (256, 256, 128, 128, 64, 64) to produce the motion

δTi = [δRi; δti], consists of the translate motion vector δti and rotation motion vector

δRi expressed in quaternion. In this work, we consider the planar pushing motions of

the objects, so the predicted motion δTi is of the form Equation (B.1.3). We note that

all MLPs are followed by LeakyRelu nonlinearities.

Distance measure on SO(3). The general distance measure is the Frobenius norm

of the difference of two rotation matrices as follows:

dSO(3)(R1,R2) = ‖R1 −R2‖F , (B.3.10)

where R1,R2 ∈ SO(3) are the rotation matrices. We can use this distance measure for

training, but we only consider planar pushing motions of the objects in this paper, we

use simpler distance metric as follows:

dSO(3)(R1,R2) = 1− cos(θ1 − θ2), (B.3.11)

B.4. Details for Pushing Manipulation 175

where θ1 and θ2 are the rotation angle of R1 and R2, when the rotation matrices are

represented as Ri = Rot(ẑ, θi)

B.4 Details for Pushing Manipulation

We use the sampling-based MPCs [97]. At each timestep t, when the observation ot

(for our case, the partially observed point cloud Pt) is obtained, the shape recogni-

tion is performed and obtain the shape parameters qt,i and poses Tt,i. We denote by

st = {(Tt,i,qt,i)}Ni=1. From the recognized objects st, we sample 100 action sequences;

the time horizon of each sequence is one for moving and singulation tasks and three

for grasping tasks. Then, using our trained SQPD-Net, we compute the next objects’

poses (i.e., st+1 = f(st,at)) and accordingly compute cost functions using st+1 for all

sampled actions. Then we find an optimal action that best minimizes the cost function.

The action sequences are resampled and the optimal action is chosen every timestep t.

B.5 Details for Grasping Cost Function

This subsection includes the details for the calculation of the grasping cost function.

Candidate grasp poses. When a superquadric representation of the target object is

obtained from the shape and pose recognition, we generate candidate grasp poses. Grasp

poses can be generated in a general superquadric through sampling-based methods [64];

in this work, we use a simple rule-based method for grasp pose generation. We gen-

erate top-down and side grasp poses (with 4 directions) according to the shape of the

superquadric. At this time, the two gripper fingers should be on the antipodal points on

the object. For each approaching direction, 6 grasp poses are generated (maximum 30

grasp poses). Grasp poses with a distance between the antipodal points greater than 7cm

176 Appendix: SQPDNet

Figure B.4: Candidate grasp poses for various recognized superquadric shapes.

are removed from the candidates (the maximum gripper width of the Franka gripper is

8cm). The grasp poses generated from various object shapes are shown in Figure B.4.

Gripper collision detection. After generating candidate grasp poses, we check the

collisions with the environment and the other recognized objects. The collision detection

has to be computed thousands of times to calculate the cost in one step of sampling-

based MPC (exactly, it is the product of the number of sampled actions and the number

of grasp poses generated above), so it is difficult to use the traditional collision checking

algorithm between meshes. Instead, we introduce an efficient method that utilizes the

advantage of shape recognition through an implicit function. We first sample the points

on the gripper mesh in the maximum open state as shown in Figure B.5; the sampled

points are denoted by Pgr = {xgr,j ∈ R3}ngr

j=1, where ngr = 512. For an implicit object

representation S(x) = 0, we note that a point x0 ∈ R
3 is inside the object when S(x0)

is less than 0 and outside when S(x0) is greater than 0. We use this fact to determine

whether the gripper collides with the objects or tables or not: when the value

min
j

S(T−1
gr xgr,j), (B.5.12)

where Tgr is the pose of the gripper, is less than 0, then the gripper collides with the

B.5. Details for Grasping Cost Function 177

Figure B.5: Gripper mesh, sampled gripper point cloud from the mesh, and point cloud

with the camera’s point cloud.

object. Through this, collisions can be checked quickly and efficiently.

In real-world pushing manipulation experiments, the gripper is equipped with an

Azure Kinect camera. To account for this, we also sample and use the camera point

cloud to check the collision, as shown in the right of Figure B.5. In this case, 1024

points are sampled (i.e., ngr = 1024) on both the gripper and the camera.

Grasping criteria. Let the recognized shapes’ implicit representations be S1(x) =

0, S2(x) = 0, · · · , SN (x) = 0, and additionally, the table’s implicit representation be

SN+1(x) = 0 (the box-shaped table can also be represented by superquadric equation).

Let Tgr,1, · · · ,Tgr,Nc ∈ SE(3) be the candidate grasp poses. Then the terminal cost is

defined by:

q(sT+1) = 1−max
k

[
(min

i,j
Si(T

−1
gr,kxgr,j) > 0) ◦ (Tgr,k is kinematically feasible)

]
,

(B.5.13)

where i = 1, · · · , N + 1 is the object index, j = 1, · · · , ngr is the gripper point cloud

index, k = 1, · · · , Nc is the candidate grasp pose index, the indicator function (·)
is Nc-dimensional vector, and ◦ is the element-wise multiplication. The terminal cost

178 Appendix: SQPDNet

is 0 if at least one kinematically feasible and collision-free grasp pose exists and 1

otherwise. When the terminal cost achieves 0, grasping proceeds by selecting one of

the grasp poses that satisfy both conditions, i.e., Tgr,k such that

min
i,j

Si(T
−1
gr,kxgr,j) > 0 and Tgr,k is kinematically feasible. (B.5.14)

C
Appendix: Search-for-Grasp

C.1 Details for Object Shape Recognition

The object shape recognition is an algorithm that takes a partial observation from a

(synthetic or real-world) RGB-D camera as input and outputs the 3D shapes of the

objects in the scene. Especially, the input is a partial point cloud of the scene obtained

from a depth camera P ⊂ R
3 (the RGB image is only used to check whether the target

object is detected or not) and output is the superquadric representations {qi,Ti}Ni=1,

where qi is the shape parameter, Ti ∈ SE(3) is the pose, and N is the number of

the objects. To design a model that performs this task, we use the same method as

in the previous work [65]. We first segment a partially observed point cloud P into

a set of object point clouds {Pi}Ni=1 and then convert each segmented point cloud Pi

to superquadric representation (qi,Ti). The segmentation and superquadric recognition

processes are based on neural network models. Each model is trained from synthetic

dataset obtained through simulation environment, and the trained models are directly

applied to both the simulation environment and the real-world environment. The overall

179

180 Appendix: Search-for-Grasp

Figure C.1: Overall process for object shape recognition.

object shape recognition process is described in Figure C.1.

Point cloud processing. For a partially observed point cloud P obtained from simu-

lation environment, to bridge the sim-to-real gap, a noise is added to each point of the

point cloud x ∈ P using the map x �→ x+mv where v is uniformly sampled on S
2 and

m is sampled from a Gaussian with zero-mean and standard deviation 0.001. The all

points corresponding to the shelf in the point cloud are removed and up/downsampled so

that the number of points is 2048, i.e., P = {xj ∈ R
3}nj=1, where n = 2048. For a par-

tially observed point cloud P obtained from real-world environment, the shelf points

are removed through the known shelf shape information and pose; since there’s noise on

shelf pose and observed point cloud, we additionally remove the points corresponding

to the floor of the shelf where the objects are placed through RANSAC plane fitting.

Then as in the case of the simulation environment, the point cloud is up/downsampled

so that the number of points is 2048.

Point cloud segmentation. After the point cloud P is processed, it is separated into

several object point clouds {Pi}ni=1 via a segmentation network. For the network archi-

tecture, we use the same architecture used in [72]. To train the segmentation network,

we first find a bipartite matching between ground-truth and predicted segmentation la-

bels using the Hungarian matching algorithm [166], and then define the loss function

as the segmentation loss between the matched labels. This loss function is invariant

C.1. Details for Object Shape Recognition 181

to the point permutation of prediction, so the network can learn permutation-invariant

segmentation labels and can be trained faster and more accurately accordingly.

Superquadric recognition. Each segmented object point cloud Pi is then converted

to the 3D full shape represented by superquadric qi ∈ R
5 and Ti ∈ SE(3) via a recogni-

tion network proposed in [64, 65]. For the network architecture, we use the same ar-

chitecture used in [65]; the input representation is a point cloud with 4-dimensional

points P ′
i = {xij ∈ R

4}nj=1 – for each point xij , the first three components of xij is

equal to xj and the last element of each point is 1 if xij ∈ Pi and 0 otherwise for all

j = 1, ..., n – and output representation is (qi,Ti). The input and output of the superq-

uadric recognition model are described in Figure C.2. To train this recognition network,

we adopt the training loss function as the difference between ground-truth and predicted

object shapes. For the ground-truth shape, we use the point cloud uniformly sampled

from the surface of the object Pg
i = {xg

j ∈ R
3}ng

j=1 where ng = 512. Then we use the

distances from the ground-truth point cloud to the predicted superquadric as the loss

function. Especially, the distance form δ proposed in [84] is used. The distance δ is

defined as follows: for the superquadric surface equation S expressed as

S(x, y, z) =

(∣∣∣∣ xa1
∣∣∣∣

2
e2

+

∣∣∣∣ ya2
∣∣∣∣

2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣

2
e1

, (C.1.1)

the distance δ between a point x ∈ R
3 and a superquadric surface S(x)−1 = 0 defined

by

δ(x0, S) = ||x||
∣∣∣1− S− e1

2 (x)
∣∣∣ , (C.1.2)

where ‖ · ‖ denotes the Euclidean norm. Accordingly, the training loss function for the

recognition network is defined as:

L =
1

ng

ng∑
j=1

δ2(T−1xg
j , S). (C.1.3)

182 Appendix: Search-for-Grasp

Figure C.2: Input and output representation of the superquadric recognition model.

where S is defined by the predicted superquadric parameters q = {a1, a2, a3, e1, e2}
and T is the predicted object pose.

We generate a training dataset to train the above two networks, the segmentation

network and the superquadric recognition network. To generate data, we randomly gen-

erate N objects consisting of cubes and cylinders with various shape parameters (i.e.,

width, height, depth for the cube, and radius, and height for the cylinder); the number

of objects N varies from 2 to 8. The generated objects are then placed in a random po-

sition and orientation on the shelf. After that, we construct a data tuple consisting of 3

components: (i) partially observed point cloud P from depth camera, (ii) segmentation

label for each point on P , and (iii) ground-truth point cloud (i.e., point cloud sam-

pled from ground-truth shape) for each object Pg
i for i = 1, ..., N . For each number of

objects N , we collect data until the numbers of the data tuples become 5000/100 for

training/validation set, respectively. As a result, the total numbers of the data tuples are

C.2. Details for Existence Function Estimate f̂ 183

35000/700 for training/validation set, respectively. The validation set is used to select

the best model for the segmentation network and the superquadric recognition network.

C.2 Details for Existence Function Estimate f̂

In this section, we describe how to calculate the existence function estimate f̂ . The

function f̂(x; s, c) is defined by the recognized superquadric parameters s = {(qi,Ti)}
and the visibility of the target object c ∈ {0, 1}. The function’s input is a hypothetical

pose x ∈ X ⊂ SE(3) and output is an indicator whether the target object can be present

at the pose x (i.e., f̂(x; s, c) = 1) or not (i.e., f̂(x; s, c) = 0). The calculation of f̂

is trivial if c = 1 since the existence function f̂ – we know at which x∗ the target

object exist – is 1 only at x∗, i.e., f̂(x∗; s, c = 1) = 1 and 0 at other x ∈ X . So

we consider only the case where c = 0, i.e., the target object is not visible. If c = 0,

f̂(x; s, c) is defined to be 1 if (i) depth rendering results with and without the target

object at x ∈ X are identical and (ii) there is no collision between the recognized

objects, the environment, and the target object. Otherwise f̂(x; s, c) = 0. We describe

how to compute the above two conditions by taking advantage of the superquadric as

an implicit function.

Depth rendering condition. We check the depth rendering condition, i.e., calculate

the function f̂d : X → {0, 1} where f̂d(x) = 1 if the depth rendering results with

and without the target object at x ∈ X are identical and f̂d(x) = 0 otherwise. To cal-

culate this, a depth rendering function that takes the 3D object shapes s as input and

outputs the corresponding depth image D ∈ R
H×W is required; the intrinsic and extrin-

sic parameters of the camera used for depth rendering are known. In this paper, depth

image can be rendered quickly using the superquadric implicit function. The overview

of the depth rendering process from recognized superquadric functions is described in

184 Appendix: Search-for-Grasp

Figure C.3: Overview of depth image rendering process from recognized superquadric

functions.

Figure C.3.

We first obtain the camera rays from the camera’s intrinsic parameters, extrinsic

parameters, and the resolution of the camera as described in [168], and we denote each

ray’s equation corresponding to the (k, l)-th pixel of the depth image as rkl : [tn, tf] →
R
3 where k = 1, ..., H , l = 1, ...,W , and tn and tf are the near and far bounds to

measure distance; in this paper, we set this values as 0 and 1.5, respectively. Each ray

is a straight line rkl(t) = oc + tdkl where oc ∈ R
3 is the position of the camera pose

and dkl ∈ S2 is a direction vector of the ray. The camera rays are shown in Figure C.3.

After recognizing the objects, we obtain N superquadric parameters and their poses

s = {(qi,Ti)}Ni=1. We recall that the superquadric equation with the superquadric pa-

rameters qi is expressed by

S(x, y, z;qi) =

(∣∣∣∣ xa1
∣∣∣∣

2
e2

+

∣∣∣∣ ya2
∣∣∣∣

2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣

2
e1

, (C.2.4)

where qi = (a1, a2, a3, e1, e2). Then, we convert the parameters from recognition to

implicit functions Si(x) = Se1(T−1
i x;qi) = 1 for i = 1, ..., N . Using the obtained

implicit functions, we calculate the signed distance-like superquadric function F as:

F (x) = min
i

Si(x) (C.2.5)

C.2. Details for Existence Function Estimate f̂ 185

Using this superquadric function, we can approximately calculate the occupancy func-

tion V (x) where V (x) = 1 if the point x is occupied and V (x) = 0 otherwise. The

occupancy can be calculated using the equation

V (x) = σ(p(1− F (x))), (C.2.6)

where σ is the sigmoid function and p is a scaling factor that adjusts the sharpness of

V – we set p = 1000 – as proposed in [169, 170]. Then the visibility function Akl(t)

– which indicates whether a point is visible in the rendered camera image – on a ray

point rkl(t) can be obtained as

Akl(t) = exp(−τ

∫ t

tn

V (rkl(t
′))dt′), (C.2.7)

with large enough τ – we set τ = 100 – as proposed in [171]. Finally, the depth value

Dkl on the (k, l)-th pixel of the rendered depth image D is calculated as

Dkl = tn +

∫ tf

tn

Akl(t)dt, (C.2.8)

where k = 1, ..., H and l = 1, ...,W . The integrals above can be calculated numerically

after uniformly dividing t ∈ [tn, tf].

The integration is required for all (k, l) pairs to obtain a perfect depth image D, but

it is not necessary to calculate for all (k, l) pairs to check the depth rendering condition.

Instead, we additionally propose an algorithm that (i) finds pixels around the recognized

object (i.e., Si’s) and the target object and (ii) calculates the depth value only for those

pixels.

We additionally propose a modified method to calculate the depth rendering condi-

tion efficiently. The key idea is that since our region of interest is the objects on the

shelf, the above calculation will also be done only near the objects. The modified al-

gorithm is based on the fact that an arbitrary superquadric (q,T) can be contained in

186 Appendix: Search-for-Grasp

an ellipsoid E; in detail, for q = (a1, a2, a3, e1, e2), the ellipsoid equation E is given

by

E(x, y, z) =
x2

3a21
+

y2

3a22
+

z2

3a23
, (C.2.9)

and the superquadric (q,T) is contained in the ellipsoid E(T−1x) ≤ 1.

Using this fact, the modified method (i) reduces the number of camera rays rkl

required for calculation, and (ii) efficiently samples the ray points rkl(t) required for

calculation in each ray rkl. For the first one, for each ray’s equation rkl(t) = oc +

tdkl, we calculate whether rkl(t) meets the ellipsoids E(T−1x) ≤ 1. If rkl(t) does

not meet any ellipsoid of the object, the depth value Dkl is set to tf , and otherwise,

Dkl is calculated following (C.2.8). Therefore, we only need to consider the rays that

meet at least one of the object ellipsoids. For the second one, instead of uniformly

dividing [tn, tf] for numerical integration of (C.2.7) and (C.2.8), we use more efficient

method for dividing; we obtain the intersection points between the ray and the ellipsoid,

and then uniformly divide the chord corresponding to the intersections. Since all of

the above calculations exist in closed-form, they have little effect on the amount of

calculation.

Using the above depth rendering module, we finally obtain the function f̂d : X →
{0, 1} to check the depth rendering condition; especially, f̂d(x) = 1 if the MSE (Mean

Squared Error) between the rendered depth images with and without the target object

at x ∈ X is lower than the threshold – we set this threshold as 0.001 – and f̂d(x) = 0

otherwise.

Collision condition. We check the collision condition, i.e., calculate the function

f̂c : X → {0, 1} where f̂c(x) = 1 if there is no collision between the recognized

objects, the environment, and the target object at x ∈ X and f̂c(x) = 0 otherwise. This

function also can be quickly evaluated using the superquadric implicit function.

C.2. Details for Existence Function Estimate f̂ 187

Figure C.4: Illustration on the collision condition fc(x). Candidate poses and collision

checking results.

We first obtain the target object point cloud sampled from the surface of the target

object Po = {xo
j ∈ R

3}no
j=1, where no = 512. Similar to the case of depth rendering

condition, we also get the superquadric implicit functions Si for i = 1, ..., N from the

recognized objects. We note that a point x ∈ R
3 is inside the i’th object Si when the

value Si(x) is less than 1 and otherwise outside. We utilize this fact to check whether

the target object collides with the recognized objects or not. The function f̂c : X →
{0, 1} is defined as:

f̂c(x) = (min
i,j

Si(x
o
j) > 1) (C.2.10)

where i = 1, ..., N is the object index, j = 1, ..., no is the point index of the target

object point cloud, and (·) is the indicator function. The calculation of the collision

condition is described in Figure C.4.

Existence function estimate. Using the above functions to check the conditions, f̂d

188 Appendix: Search-for-Grasp

and f̂c, we define the existence function estimate f̂ : X → {0, 1} as follows,

f̂(x) = f̂d(x)f̂c(x).

In the other words, the existence function is 1 at a pose x ∈ X if both the depth

rendering condition and the collision condition holds and 0 otherwise.

Computational cost. The calculation time takes 0.013 seconds in average where

WH = 18, 564, np = 7, N = 4, and no = 512 with GeForce RTX 3090 and Gen In-

tel(R) Core(TM) i9-11900K @ 3.50GHz. We design the existence function is calculated

in batch-wise with respect to the target pose x to accelerate the computation time for

MPC.

C.3 Details for Graspability Function Estimate ĝ

In this section, we describe how to calculate the graspability function estimate ĝ. The

function ĝ(x; s) is defined by the recognized superquadric parameters s = {(qi,Ti)}.

The function’s input is a hypothetical pose x ∈ X ⊂ SE(3) and output is an indicator

whether a collision-free grasping trajectory of the robot gripper – all possible collisions

between the robot arm, the robot gripper, the shelf, and the surrounding objects sho-

uld be taken into account – can be find at the pose x (i.e., ĝ(x; s) = 1) or not (i.e.,

ĝ(x; s) = 0). We then describe how to compute the graspability function by also taking

the advantage of the superquadrics as an implicit function similar to the calculation of

the existence function.

Candidate grasping trajectories. To check the graspability, i.e., to check whether

a collision-free grasping trajectory exists, we generate candidate grasping trajectories

to grasp the target object. To achieve this, we first generate candidate grasp poses for

the target object using a simple rule-based method as introduced in [65]. In this paper,

C.3. Details for Graspability Function Estimate ĝ 189

Figure C.5: The examples of the candidate grasp poses for various object shapes (Left)

and the robot trajectory for a selected grasp pose (right).

Figure C.6: Illustration on the grasp trajectory collision detection. Candidate grasp tra-

jectories and collision checking results.

190 Appendix: Search-for-Grasp

we generate side grasp poses according to the shape and size of the superquadric. The

pairs of the antipodal points of the target objects are sampled since we use two-finger

gripper, and the grasp poses with a distance of bigger than 7.5cm between antipodal

points are rejected since the maximum gripper width of the Franka gripper is 8cm. To

stably grasp the target object on the shelf, we tilted the grasp poses about 20◦ relative to

the ground. Accordingly, we generate Ngr grasp poses {Tgr
k }Ngr

k=1 where Ngr is between

10 and 30; the examples of the grasp poses for various object shapes are shown in the

left of Figure C.5. Then, we additionally have to plan the trajectory of the robot arm

for each grasp pose. For a grasp pose Tgr
k ∈ SE(3), we design a robot trajectory where

the gripper approaches about 30cm along the z-direction of the gripper frame as shown

in the right of Figure C.5. Finally, we get Ngr candidate grasping trajectories for the

target object.

Grasp trajectory collision detection. After generating grasping trajectories, we sho-

uld check whether the robot arm following the trajectory collides with the surrounding

objects or the shelf. We first obtain the afterimage mesh of the gripper and Franka’s

links 7 and 6 when the robot follows the trajectory of the grasp pose Tgr
k and ob-

tain the point cloud Pgr
k = {xgr

kj ∈ R
3}ngr

j=1 sampled from the afterimage mesh, where

ngr = 2048. We get the superquadric implicit functions Si(x) = Se1(T−1
i x;qi) = 1

for i = 1, ..., N from the recognized surrounding objects. We additionally represent the

shelf as the superquadric implicit functions; a shelf can be represented by five boxes

so five implicit functions SN+1(x), ..., SN+5(x) are additionally considered. We recall

from the collision condition of existence function that a point x ∈ R
3 is inside the

i’th object Si when the value Si(x) is less than 1 and otherwise outside. The collision

C.3. Details for Graspability Function Estimate ĝ 191

function ĝc : X → {0, 1} is defined as:

ĝc(x) = (max
k

min
i,j

Si(x
gr
kj) > 1) (C.3.11)

= 1− (max
k

min
i,j

Si(x
gr
kj) <= 1) (C.3.12)

where i = 1, ..., N +5 is the object index, j = 1, ..., ngr is the point index of the target

object point cloud, i = 1, ..., Ngr is the grasp pose index, and (·) is the indicator func-

tion. The calculation of the collision of the grasp trajectories is described in Figure C.6.

In practice, the modified collision detection function ĝc,m : X → {0, 1} we used is:

ĝc,m(x) = 1−min
k

∑
i

(min
j

Si(x
gr
kj) <= 1) (C.3.13)

Graspability function. We define the graspability function estimate ĝ : X → {0, 1}
as the same with ĝc, i.e.,

ĝ(x) = ĝc(x). (C.3.14)

The modified graspability function estimate is the same with ĝc,m, i.e.,

ĝ(x) = ĝc,m(x). (C.3.15)

Computational cost. The calculation time takes 0.0128 seconds in average, where

N + 5 = 6, ngr = 2048, and Ngr = 32 with GeForce RTX 3090 and Gen Intel(R)

Core(TM) i9-11900K @ 3.50GHz.

192 Appendix: Search-for-Grasp

Bibliography

[1] Antonio Bicchi and Vijay Kumar. Robotic grasping and contact: A review. In

Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference

on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol-

ume 1, pages 348–353. IEEE, 2000.

[2] Anis Sahbani, Sahar El-Khoury, and Philippe Bidaud. An overview of 3d object

grasp synthesis algorithms. Robotics and Autonomous Systems, 60(3):326–336,

2012.

[3] Matthew T Mason. Mechanics and planning of manipulator pushing operations.

The International Journal of Robotics Research, 5(3):53–71, 1986.

[4] Kevin M Lynch. Estimating the friction parameters of pushed objects. In Pro-

ceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS’93), volume 1, pages 186–193. IEEE, 1993.

[5] Kevin M Lynch and Matthew T Mason. Stable pushing: Mechanics, controllabil-

ity, and planning. The international journal of robotics research, 15(6):533–556,

1996.

[6] Jiaji Zhou, Yifan Hou, and Matthew T Mason. Pushing revisited: Differential flat-

ness, trajectory planning, and stabilization. The International Journal of Robotics

Research, 38(12-13):1477–1489, 2019.

[7] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan,

Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. Dex-net 2.0: Deep learn-

ing to plan robust grasps with synthetic point clouds and analytic grasp metrics.

arXiv preprint arXiv:1703.09312, 2017.

193

194 BIBLIOGRAPHY

[8] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp pose

detection in point clouds. The International Journal of Robotics Research, 36(13-

14):1455–1473, 2017.

[9] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.

Learning hand-eye coordination for robotic grasping with deep learning and large-

scale data collection. The International Journal of Robotics Research, 37(4-

5):421–436, 2018.

[10] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof graspnet: Variational

grasp generation for object manipulation. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 2901–2910, 2019.

[11] Kilian Kleeberger, Richard Bormann, Werner Kraus, and Marco F Huber. A sur-

vey on learning-based robotic grasping. Current Robotics Reports, pages 1–11,

2020.

[12] Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox.

Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes. In 2021

IEEE International Conference on Robotics and Automation (ICRA), pages

13438–13444. IEEE, 2021.

[13] Xibai Lou, Yang Yang, and Changhyun Choi. Collision-aware target-driven object

grasping in constrained environments. In 2021 IEEE International Conference on

Robotics and Automation (ICRA), pages 6364–6370. IEEE, 2021.

[14] Xupeng Zhu, Dian Wang, Ondrej Biza, Guanang Su, Robin Walters, and Robert

Platt. Sample efficient grasp learning using equivariant models. arXiv preprint

arXiv:2202.09468, 2022.

BIBLIOGRAPHY 195

[15] Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. Se (3)-

diffusionfields: Learning smooth cost functions for joint grasp and motion opt-

imization through diffusion. In 2023 IEEE International Conference on Robotics

and Automation (ICRA), pages 5923–5930. IEEE, 2023.

[16] Rhys Newbury, Morris Gu, Lachlan Chumbley, Arsalan Mousavian, Clemens Epp-

ner, Jürgen Leitner, Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica

Kragic, et al. Deep learning approaches to grasp synthesis: A review. IEEE

Transactions on Robotics, 2023.

[17] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and

Thomas Funkhouser. Learning synergies between pushing and grasping with self-

supervised deep reinforcement learning. In 2018 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 4238–4245. IEEE, 2018.

[18] Michael Danielczuk, Jeffrey Mahler, Chris Correa, and Ken Goldberg. Linear

push policies to increase grasp access for robot bin picking. In 2018 IEEE 14th

International Conference on Automation Science and Engineering (CASE), pages

1249–1256. IEEE, 2018.

[19] Kechun Xu, Hongxiang Yu, Qianen Lai, Yue Wang, and Rong Xiong. Efficient

learning of goal-oriented push-grasping synergy in clutter. IEEE Robotics and

Automation Letters, 6(4):6337–6344, 2021.

[20] Eddie Sasagawa and Changhyun Choi. Fixture-aware ddqn for generalized

environment-enabled grasping. In 2022 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 3151–3158. IEEE, 2022.

196 BIBLIOGRAPHY

[21] Enbo Li, Haibo Feng, Songyuan Zhang, and Yili Fu. Learning target-oriented

push-grasping synergy in clutter with action space decoupling. IEEE Robotics

and Automation Letters, 7(4):11966–11973, 2022.

[22] Min Zhao, Guoyu Zuo, Shuangyue Yu, Daoxiong Gong, Zihao Wang, and Ouat-

tara Sie. Position-aware pushing and grasping synergy with deep reinforcement

learning in clutter. CAAI Transactions on Intelligence Technology, 2023.

[23] Gaoyuan Liu, Joris De Winter, Denis Steckelmacher, Roshan Kumar Hota, Ann

Nowe, and Bram Vanderborght. Synergistic task and motion planning with rein-

forcement learning-based non-prehensile actions. IEEE Robotics and Automation

Letters, 8(5):2764–2771, 2023.

[24] Marios Kiatos and Sotiris Malassiotis. Robust object grasping in clutter via sin-

gulation. In 2019 International Conference on Robotics and Automation (ICRA),

pages 1596–1600. IEEE, 2019.

[25] Iason Sarantopoulos, Marios Kiatos, Zoe Doulgeri, and Sotiris Malassiotis. Split

deep q-learning for robust object singulation. In 2020 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 6225–6231. IEEE, 2020.

[26] Iason Sarantopoulos, Marios Kiatos, Zoe Doulgeri, and Sotiris Malassiotis. Total

singulation with modular reinforcement learning. IEEE Robotics and Automation

Letters, 6(2):4117–4124, 2021.

[27] Houjian Yu and Changhyun Choi. Self-supervised interactive object segmenta-

tion through a singulation-and-grasping approach. In European Conference on

Computer Vision, pages 621–637. Springer, 2022.

BIBLIOGRAPHY 197

[28] Weihao Yuan, Kaiyu Hang, Danica Kragic, Michael Y Wang, and Johannes A

Stork. End-to-end nonprehensile rearrangement with deep reinforcement learning

and simulation-to-reality transfer. Robotics and Autonomous Systems, 119:119–

134, 2019.

[29] Ahmed H Qureshi, Arsalan Mousavian, Chris Paxton, Michael C Yip, and Dieter

Fox. Nerp: Neural rearrangement planning for unknown objects. arXiv preprint

arXiv:2106.01352, 2021.

[30] Ankit Goyal, Arsalan Mousavian, Chris Paxton, Yu-Wei Chao, Brian Okorn, Jia

Deng, and Dieter Fox. Ifor: Iterative flow minimization for robotic object rear-

rangement. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 14787–14797, 2022.

[31] Bingjie Tang and Gaurav S Sukhatme. Selective object rearrangement in clutter.

In Conference on Robot Learning, pages 1001–1010. PMLR, 2023.

[32] Eric Huang, Zhenzhong Jia, and Matthew T Mason. Large-scale multi-object

rearrangement. In 2019 International Conference on Robotics and Automation

(ICRA), pages 211–218. IEEE, 2019.

[33] Haoran Song, Joshua A Haustein, Weihao Yuan, Kaiyu Hang, Michael Yu Wang,

Danica Kragic, and Johannes A Stork. Multi-object rearrangement with monte

carlo tree search: A case study on planar nonprehensile sorting. In 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 9433–

9440. IEEE, 2020.

[34] Arunkumar Byravan and Dieter Fox. Se3-nets: Learning rigid body motion using

deep neural networks. In 2017 IEEE International Conference on Robotics and

Automation (ICRA), pages 173–180. IEEE, 2017.

198 BIBLIOGRAPHY

[35] Arunkumar Byravan, Felix Leeb, Franziska Meier, and Dieter Fox. Se3-pose-

nets: Structured deep dynamics models for visuomotor control. In 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages 3339–3346.

IEEE, 2018.

[36] Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised

visual planning with temporal skip connections. CoRL, 12:16, 2017.

[37] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey

Levine. Visual foresight: Model-based deep reinforcement learning for vision-

based robotic control. arXiv preprint arXiv:1812.00568, 2018.

[38] Michael Janner, Sergey Levine, William T Freeman, Joshua B Tenenbaum,

Chelsea Finn, and Jiajun Wu. Reasoning about physical interactions with object-

oriented prediction and planning. arXiv preprint arXiv:1812.10972, 2018.

[39] Yufei Ye, Dhiraj Gandhi, Abhinav Gupta, and Shubham Tulsiani. Object-centric

forward modeling for model predictive control. In Conference on Robot Learning,

pages 100–109. PMLR, 2020.

[40] Zhenjia Xu, Zhanpeng He, Jiajun Wu, and Shuran Song. Learning 3d dynamic

scene representations for robot manipulation. arXiv preprint arXiv:2011.01968,

2020.

[41] Jiayu Wang, Chuxiong Hu, Yunan Wang, and Yu Zhu. Dynamics learning with

object-centric interaction networks for robot manipulation. IEEE Access, 9:68277–

68288, 2021.

[42] Baichuan Huang, Shuai D Han, Abdeslam Boularias, and Jingjin Yu. Dipn: Deep

interaction prediction network with application to clutter removal. In 2021 IEEE

BIBLIOGRAPHY 199

International Conference on Robotics and Automation (ICRA), pages 4694–4701.

IEEE, 2021.

[43] Sheng Yu, Di-Hua Zhai, and Yuanqing Xia. A novel robotic pushing and grasp-

ing method based on vision transformer and convolution. IEEE Transactions on

Neural Networks and Learning Systems, 2023.

[44] Corey Goldfeder, Peter K Allen, Claire Lackner, and Raphael Pelossof. Grasp

planning via decomposition trees. In Proceedings 2007 IEEE International Con-

ference on Robotics and Automation, pages 4679–4684. IEEE, 2007.

[45] Kai Huebner, Steffen Ruthotto, and Danica Kragic. Minimum volume bounding

box decomposition for shape approximation in robot grasping. In 2008 IEEE

International Conference on Robotics and Automation, pages 1628–1633. IEEE,

2008.

[46] Clemens Eppner and Oliver Brock. Grasping unknown objects by exploiting

shape adaptability and environmental constraints. In 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 4000–4006. IEEE, 2013.

[47] Siddarth Jain and Brenna Argall. Grasp detection for assistive robotic manipula-

tion. In 2016 IEEE International Conference on Robotics and Automation (ICRA),

pages 2015–2021. IEEE, 2016.

[48] Natsuki Yamanobe and Kazuyuki Nagata. Grasp planning for everyday objects

based on primitive shape representation for parallel jaw grippers. In 2010 IEEE

International Conference on Robotics and Biomimetics, pages 1565–1570. IEEE,

2010.

200 BIBLIOGRAPHY

[49] Abhijit Makhal, Federico Thomas, and Alba Perez Gracia. Grasping unknown

objects in clutter by superquadric representation. In 2018 Second IEEE Interna-

tional Conference on Robotic Computing (IRC), pages 292–299. IEEE, 2018.

[50] Yuwei Wu, Weixiao Liu, Zhiyang Liu, and Gregory S Chirikjian. Learning-

free grasping of unknown objects using hidden superquadrics. arXiv preprint

arXiv:2305.06591, 2023.

[51] Jacob Varley, Chad DeChant, Adam Richardson, Joaquín Ruales, and Peter Allen.

Shape completion enabled robotic grasping. In 2017 IEEE/RSJ international con-

ference on intelligent robots and systems (IROS), pages 2442–2447. IEEE, 2017.

[52] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. Pcn:

Point completion network. In 2018 International Conference on 3D Vision (3DV),

pages 728–737. IEEE, 2018.

[53] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer.

In Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, pages 3907–3916, 2018.

[54] Takuya Torii and Manabu Hashimoto. Model-less estimation method for robot

grasping parameters using 3d shape primitive approximation. In 2018 IEEE 14th

International Conference on Automation Science and Engineering (CASE), pages

580–585. IEEE, 2018.

[55] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li. Learning to infer im-

plicit surfaces without 3d supervision. Advances in Neural Information Processing

Systems, 32, 2019.

BIBLIOGRAPHY 201

[56] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and

Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function

space. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 4460–4470, 2019.

[57] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven

Lovegrove. Deepsdf: Learning continuous signed distance functions for shape

representation. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 165–174, 2019.

[58] Mark Van der Merwe, Qingkai Lu, Balakumar Sundaralingam, Martin Matak, and

Tucker Hermans. Learning continuous 3d reconstructions for geometrically aware

grasping. In 2020 IEEE International Conference on Robotics and Automation

(ICRA), pages 11516–11522. IEEE, 2020.

[59] Yunzhi Lin, Chao Tang, Fu-Jen Chu, and Patricio A Vela. Using synthetic

data and deep networks to recognize primitive shapes for object grasping. In

2020 IEEE International Conference on Robotics and Automation (ICRA), pages

10494–10501. IEEE, 2020.

[60] Marios Kiatos, Sotiris Malassiotis, and Iason Sarantopoulos. A geometric ap-

proach for grasping unknown objects with multifingered hands. IEEE Transac-

tions on Robotics, 37(3):735–746, 2020.

[61] Terrance E Boult and Ari D Gross. Recovery of superquadrics from depth infor-

mation. In Proc. Workshop on Spatial Reasoning and Multi-Sensor Fusion, pages

128–137, 1987.

[62] Erik Roeland Van Dop and Paul PL Regtien. Fitting undeformed superquadrics

to range data: improving model recovery and classification. In Proceedings. 1998

202 BIBLIOGRAPHY

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(Cat. No. 98CB36231), pages 396–401. IEEE, 1998.

[63] Franc Solina and Ruzena Bajcsy. Recovery of parametric models from range

images: The case for superquadrics with global deformations. IEEE transactions

on pattern analysis and machine intelligence, 12(2):131–147, 1990.

[64] Seungyeon Kim, Taegyun Ahn, Yonghyeon Lee, Jihwan Kim, Michael Yu Wang,

and Frank C Park. Dsqnet: A deformable model-based supervised learning algo-

rithm for grasping unknown occluded objects. IEEE Transactions on Automation

Science and Engineering, 2022.

[65] Seungyeon Kim, Byeongdo Lim, Yonghyeon Lee, and Frank C Park. Se (2)-

equivariant pushing dynamics models for tabletop object manipulations. In Con-

ference on Robot Learning, pages 427–436. PMLR, 2023.

[66] Seungyeon Kim, Young Hun Kim, Yonghyeon Lee, and Frank C Park. Leverag-

ing 3d reconstruction for mechanical search on cluttered shelves. In 7th Annual

Conference on Robot Learning, 2023.

[67] Alan H Barr. Global and local deformations of solid primitives. In Readings in

Computer Vision, pages 661–670. Elsevier, 1987.

[68] Yunzhi Lin, Chao Tang, Fu-Jen Chu, Ruinian Xu, and Patricio A Vela. Primitive

shape recognition for object grasping. arXiv preprint arXiv:2201.00956, 2022.

[69] Wei Gao and Russ Tedrake. kpam-sc: Generalizable manipulation planning using

keypoint affordance and shape completion. In 2021 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 6527–6533. IEEE, 2021.

BIBLIOGRAPHY 203

[70] Marcus Gualtieri and Robert Platt. Robotic pick-and-place with uncertain object

instance segmentation and shape completion. IEEE robotics and automation let-

ters, 6(2):1753–1760, 2021.

[71] Nikhil Chavan-Dafle, Sergiy Popovych, Shubham Agrawal, Daniel D Lee, and

Volkan Isler. Simultaneous object reconstruction and grasp prediction using a

camera-centric object shell representation. In 2022 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pages 1396–1403. IEEE, 2022.

[72] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and

Justin M Solomon. Dynamic graph cnn for learning on point clouds. Acm Trans-

actions On Graphics (tog), 38(5):1–12, 2019.

[73] Sahar El Khoury, Miao Li, and Aude Billard. Bridging the gap: One shot grasp

synthesis approach. In 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 2027–2034. IEEE, 2012.

[74] Ana Huamán Quispe, Benoît Milville, Marco A Gutiérrez, Can Erdogan, Mike

Stilman, Henrik Christensen, and Heni Ben Amor. Exploiting symmetries and

extrusions for grasping household objects. In 2015 IEEE International Conference

on Robotics and Automation (ICRA), pages 3702–3708. IEEE, 2015.

[75] Giulia Vezzani, Ugo Pattacini, and Lorenzo Natale. A grasping approach based

on superquadric models. In 2017 IEEE International Conference on Robotics and

Automation (ICRA), pages 1579–1586. IEEE, 2017.

[76] Giulia Vezzani, Ugo Pattacini, Giulia Pasquale, and Lorenzo Natale. Improving

superquadric modeling and grasping with prior on object shapes. In 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages 6875–6882.

IEEE, 2018.

204 BIBLIOGRAPHY

[77] David Schiebener, Andreas Schmidt, Nikolaus Vahrenkamp, and Tamim Asfour.

Heuristic 3d object shape completion based on symmetry and scene context.

In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 74–81. IEEE, 2016.

[78] Miao Li, Kaiyu Hang, Danica Kragic, and Aude Billard. Dexterous grasping

under shape uncertainty. Robotics and Autonomous Systems, 75:352–364, 2016.

[79] Xinchen Yan, Jasmined Hsu, Mohammad Khansari, Yunfei Bai, Arkanath Pathak,

Abhinav Gupta, James Davidson, and Honglak Lee. Learning 6-dof grasping in-

teraction via deep geometry-aware 3d representations. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pages 3766–3773. IEEE, 2018.

[80] Jens Lundell, Enric Corona, Tran Nguyen Le, Francesco Verdoja, Philippe Wein-

zaepfel, Grégory Rogez, Francesc Moreno-Noguer, and Ville Kyrki. Multi-fingan:

Generative coarse-to-fine sampling of multi-finger grasps. In 2021 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 4495–4501. IEEE,

2021.

[81] Jens Lundell, Francesco Verdoja, and Ville Kyrki. Ddgc: Generative deep dexter-

ous grasping in clutter. IEEE Robotics and Automation Letters, 6(4):6899–6906,

2021.

[82] Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, and Yuke Zhu. Syner-

gies between affordance and geometry: 6-dof grasp detection via implicit repre-

sentations. arXiv preprint arXiv:2104.01542, 2021.

[83] Daniel Yang, Tarik Tosun, Benjamin Eisner, Volkan Isler, and Daniel Lee. Robotic

grasping through combined image-based grasp proposal and 3d reconstruction. In

BIBLIOGRAPHY 205

2021 IEEE International Conference on Robotics and Automation (ICRA), pages

6350–6356. IEEE, 2021.

[84] Ari D Gross and Terrance E Boult. Error of fit measures for recovering parametric

solids. In ICCV, 1988.

[85] I-Ming Chen and Joel W Burdick. Finding antipodal point grasps on irregularly

shaped objects. IEEE transactions on Robotics and Automation, 9(4):507–512,

1993.

[86] Joseph O’Rourke. Finding minimal enclosing boxes. International journal of

computer & information sciences, 14(3):183–199, 1985.

[87] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige, Sid-

dhartha Srinivasa, Pieter Abbeel, and Aaron M Dollar. Yale-cmu-berkeley dataset

for robotic manipulation research. The International Journal of Robotics Re-

search, 36(3):261–268, 2017.

[88] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin,

and Claudio T. Silva. Computing and rendering point set surfaces. IEEE Trans-

actions on visualization and computer graphics, 9(1):3–15, 2003.

[89] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose library

for collision and proximity queries. In 2012 IEEE International Conference on

Robotics and Automation, pages 3859–3866. IEEE, 2012.

[90] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit![ros topics]. IEEE Robotics

& Automation Magazine, 19(1):18–19, 2012.

206 BIBLIOGRAPHY

[91] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-

based algorithm for discovering clusters in large spatial databases with noise. kdd,

96(34):226–231, 1996.

[92] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianx-

iong Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D Model

Repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University —

Princeton University — Toyota Technological Institute at Chicago, 2015.

[93] Yang Yang, Hengyue Liang, and Changhyun Choi. A deep learning approach to

grasping the invisible. IEEE Robotics and Automation Letters, 5(2):2232–2239,

2020.

[94] Michael Danielczuk, Anelia Angelova, Vincent Vanhoucke, and Ken Goldberg. X-

ray: Mechanical search for an occluded object by minimizing support of learned

occupancy distributions. In 2020 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), pages 9577–9584. IEEE, 2020.

[95] Marwan Qaid Mohammed, Lee Chung Kwek, Shing Chyi Chua, Arafat Al-

Dhaqm, Saeid Nahavandi, Taiseer Abdalla Elfadil Eisa, Muhammad Fahmi

Miskon, Mohammed Nasser Al-Mhiqani, Abdulalem Ali, Mohammed Abaker,

et al. Review of learning-based robotic manipulation in cluttered environments.

Sensors, 22(20):7938, 2022.

[96] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning.

The international journal of robotics research, 20(5):378–400, 2001.

[97] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural

network dynamics for model-based deep reinforcement learning with model-free

BIBLIOGRAPHY 207

fine-tuning. In 2018 IEEE International Conference on Robotics and Automation

(ICRA), pages 7559–7566. IEEE, 2018.

[98] Michael Strecke and Joerg Stueckler. Diffsdfsim: Differentiable rigid-body dy-

namics with implicit shapes. In 2021 International Conference on 3D Vision

(3DV), pages 96–105. IEEE, 2021.

[99] Danny Driess, Jung-Su Ha, Marc Toussaint, and Russ Tedrake. Learning models

as functionals of signed-distance fields for manipulation planning. In Conference

on Robot Learning, pages 245–255. PMLR, 2022.

[100] Youngsun Wi, Pete Florence, Andy Zeng, and Nima Fazeli. Virdo: Visio-tactile

implicit representations of deformable objects. In 2022 International Conference

on Robotics and Automation (ICRA), pages 3583–3590. IEEE, 2022.

[101] Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint.

Learning multi-object dynamics with compositional neural radiance fields. In

Conference on Robot Learning, pages 1755–1768. PMLR, 2023.

[102] Despoina Paschalidou, Ali Osman Ulusoy, and Andreas Geiger. Superquadrics

revisited: Learning 3d shape parsing beyond cuboids. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 10344–10353,

2019.

[103] Weixiao Liu, Yuwei Wu, Sipu Ruan, and Gregory S Chirikjian. Robust and ac-

curate superquadric recovery: a probabilistic approach. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2676–

2685, 2022.

208 BIBLIOGRAPHY

[104] Yuwei Wu, Weixiao Liu, Sipu Ruan, and Gregory S Chirikjian. Primitive-based

shape abstraction via nonparametric bayesian inference. In European Conference

on Computer Vision, pages 479–495. Springer, 2022.

[105] Weixiao Liu, Yuwei Wu, Sipu Ruan, and Gregory S Chirikjian. Marching-

primitives: Shape abstraction from signed distance function. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

8771–8780, 2023.

[106] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geomet-

ric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint

arXiv:2104.13478, 2021.

[107] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a

convolutional neural network. In 2017 international conference on engineering

and technology (ICET), pages 1–6. Ieee, 2017.

[108] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. The graph neural network model. IEEE transactions on

neural networks, 20(1):61–80, 2008.

[109] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 652–660,

2017.

[110] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R

Salakhutdinov, and Alexander J Smola. Deep sets. Advances in neural informa-

tion processing systems, 30, 2017.

BIBLIOGRAPHY 209

[111] Taco Cohen and Max Welling. Group equivariant convolutional networks. In

International conference on machine learning, pages 2990–2999. PMLR, 2016.

[112] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns.

arXiv preprint arXiv:1801.10130, 2018.

[113] Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant

cnns on homogeneous spaces. Advances in neural information processing systems,

32, 2019.

[114] Elise van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek, and Max

Welling. Mdp homomorphic networks: Group symmetries in reinforcement learn-

ing. Advances in Neural Information Processing Systems, 33:4199–4210, 2020.

[115] Dian Wang, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant q learning

in spatial action spaces. In Conference on Robot Learning, pages 1713–1723.

PMLR, 2022.

[116] Haojie Huang, Dian Wang, Robin Walters, and Robert Platt. Equivariant trans-

porter network. arXiv preprint arXiv:2202.09400, 2022.

[117] Dian Wang, Mingxi Jia, Xupeng Zhu, Robin Walters, and Robert Platt. On-robot

learning with equivariant models. arXiv preprint arXiv:2203.04923, 2022.

[118] Colin Kohler, Anuj Shrivatsav Srikanth, Eshan Arora, and Robert Platt. Sym-

metric models for visual force policy learning. arXiv preprint arXiv:2308.14670,

2023.

[119] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B Tenenbaum, Al-

berto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann. Neural descriptor fields:

210 BIBLIOGRAPHY

Se (3)-equivariant object representations for manipulation. In 2022 International

Conference on Robotics and Automation (ICRA), pages 6394–6400. IEEE, 2022.

[120] Hyunwoo Ryu, Hong-in Lee, Jeong-Hoon Lee, and Jongeun Choi. Equivariant

descriptor fields: Se (3)-equivariant energy-based models for end-to-end visual

robotic manipulation learning. arXiv preprint arXiv:2206.08321, 2022.

[121] Anthony Simeonov, Yilun Du, Yen-Chen Lin, Alberto Rodriguez Garcia,

Leslie Pack Kaelbling, Tomás Lozano-Pérez, and Pulkit Agrawal. Se (3)-

equivariant relational rearrangement with neural descriptor fields. In Conference

on Robot Learning, pages 835–846. PMLR, 2023.

[122] Zhengrong Xue, Zhecheng Yuan, Jiashun Wang, Xueqian Wang, Yang Gao, and

Huazhe Xu. Useek: Unsupervised se (3)-equivariant 3d keypoints for general-

izable manipulation. In 2023 IEEE International Conference on Robotics and

Automation (ICRA), pages 1715–1722. IEEE, 2023.

[123] Huy Ha and Shuran Song. Flingbot: The unreasonable effectiveness of dynamic

manipulation for cloth unfolding. In Conference on Robot Learning, pages 24–33.

PMLR, 2022.

[124] Yonghyeon Lee, Jonghyuk Baek, Young Min Kim, and Frank Chongwoo Park.

Imat: The iterative medial axis transform. Computer Graphics Forum, 40(6):162–

181, 2021.

[125] Yonghyeon Lee, Seungyeon Kim, Jinwon Choi, and Frank Park. A statistical

manifold framework for point cloud data. In International Conference on Machine

Learning, pages 12378–12402. PMLR, 2022.

BIBLIOGRAPHY 211

[126] Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B Tenenbaum, and Shuran Song.

Densephysnet: Learning dense physical object representations via multi-step dy-

namic interactions. arXiv preprint arXiv:1906.03853, 2019.

[127] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn:

A convolutional neural network for 6d object pose estimation in cluttered scenes.

arXiv preprint arXiv:1711.00199, 2017.

[128] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter Fox. Unseen object

instance segmentation for robotic environments. IEEE Transactions on Robotics,

37(5):1343–1359, 2021.

[129] Lawson LS Wong, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.

Manipulation-based active search for occluded objects. In 2013 IEEE In-

ternational Conference on Robotics and Automation, pages 2814–2819. IEEE,

2013.

[130] Megha Gupta, Thomas Rühr, Michael Beetz, and Gaurav S Sukhatme. Interactive

environment exploration in clutter. In 2013 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 5265–5272. IEEE, 2013.

[131] Mehmet R Dogar, Michael C Koval, Abhijeet Tallavajhula, and Siddhartha S

Srinivasa. Object search by manipulation. Autonomous Robots, 36:153–167, 2014.

[132] Jue Kun Li, David Hsu, and Wee Sun Lee. Act to see and see to act: Pomdp

planning for objects search in clutter. In 2016 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 5701–5707. IEEE, 2016.

212 BIBLIOGRAPHY

[133] Yuchen Xiao, Sammie Katt, Andreas ten Pas, Shengjian Chen, and Christopher

Amato. Online planning for target object search in clutter under partial observ-

ability. In 2019 International Conference on Robotics and Automation (ICRA),

pages 8241–8247. IEEE, 2019.

[134] Michael Danielczuk, Andrey Kurenkov, Ashwin Balakrishna, Matthew Matl,

David Wang, Roberto Martín-Martín, Animesh Garg, Silvio Savarese, and Ken

Goldberg. Mechanical search: Multi-step retrieval of a target object occluded by

clutter. In 2019 International Conference on Robotics and Automation (ICRA),

pages 1614–1621. IEEE, 2019.

[135] Andrew Price, Linyi Jin, and Dmitry Berenson. Inferring occluded geometry im-

proves performance when retrieving an object from dense clutter. In Robotics Re-

search: The 19th International Symposium ISRR, pages 376–392. Springer, 2022.

[136] Jinhwi Lee, Younggil Cho, Changjoo Nam, Jonghyeon Park, and Changhwan

Kim. Efficient obstacle rearrangement for object manipulation tasks in cluttered

environments. In 2019 International Conference on Robotics and Automation

(ICRA), pages 183–189. IEEE, 2019.

[137] Jinhwi Lee, Changjoo Nam, Jonghyeon Park, and Changhwan Kim. Tree search-

based task and motion planning with prehensile and non-prehensile manipulation

for obstacle rearrangement in clutter. In 2021 IEEE International Conference on

Robotics and Automation (ICRA), pages 8516–8522. IEEE, 2021.

[138] Ewerton R Vieira, Daniel Nakhimovich, Kai Gao, Rui Wang, Jingjin Yu, and

Kostas E Bekris. Persistent homology for effective non-prehensile manipulation.

In 2022 International Conference on Robotics and Automation (ICRA), pages

1918–1924. IEEE, 2022.

BIBLIOGRAPHY 213

[139] Sangbeom Park, Yoonbyung Chai, Sunghyun Park, Jeongeun Park, Kyungjae Lee,

and Sungjoon Choi. Semi-autonomous teleoperation via learning non-prehensile

manipulation skills. In 2022 International Conference on Robotics and Automa-

tion (ICRA), pages 9295–9301. IEEE, 2022.

[140] Changjoo Nam, Jinhwi Lee, Younggil Cho, Jeongho Lee, Dong Hwan Kim, and

ChangHwan Kim. Planning for target retrieval using a robotic manipulator in

cluttered and occluded environments. arXiv preprint arXiv:1907.03956, 2019.

[141] Changjoo Nam, Jinhwi Lee, Sang Hun Cheong, Brian Y Cho, and ChangHwan

Kim. Fast and resilient manipulation planning for target retrieval in clutter. In

2020 IEEE International Conference on Robotics and Automation (ICRA), pages

3777–3783. IEEE, 2020.

[142] Changjoo Nam, Sang Hun Cheong, Jinhwi Lee, Dong Hwan Kim, and ChangH-

wan Kim. Fast and resilient manipulation planning for object retrieval in cluttered

and confined environments. IEEE Transactions on Robotics, 37(5):1539–1552,

2021.

[143] Huang Huang, Marcus Dominguez-Kuhne, Vishal Satish, Michael Danielczuk,

Kate Sanders, Jeffrey Ichnowski, Andrew Lee, Anelia Angelova, Vincent Van-

houcke, and Ken Goldberg. Mechanical search on shelves using lateral access

x-ray. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), pages 2045–2052. IEEE, 2021.

[144] Huang Huang, Michael Danielczuk, Chung Min Kim, Letian Fu, Zachary Tam,

Jeffrey Ichnowski, Anelia Angelova, Brian Ichter, and Ken Goldberg. Mechanical

search on shelves using a novel “bluction” tool. In 2022 International Conference

on Robotics and Automation (ICRA), pages 6158–6164. IEEE, 2022.

214 BIBLIOGRAPHY

[145] Huang Huang, Letian Fu, Michael Danielczuk, Chung Min Kim, Zachary Tam,

Jeffrey Ichnowski, Anelia Angelova, Brian Ichter, and Ken Goldberg. Mechanical

search on shelves with efficient stacking and destacking of objects. In Robotics

Research, pages 205–221. Springer, 2023.

[146] Yiming Ye and John K Tsotsos. Sensor planning for 3d object search. Computer

Vision and Image Understanding, 73(2):145–168, 1999.

[147] Kristoffer Sjö, Dorian Gálvez López, Chandana Paul, Patric Jensfelt, and Danica

Kragic. Object search and localization for an indoor mobile robot. Journal of

Computing and Information Technology, 17(1):67–80, 2009.

[148] Thomas Kollar and Nicholas Roy. Utilizing object-object and object-scene context

when planning to find things. In 2009 IEEE International Conference on Robotics

and Automation, pages 2168–2173. IEEE, 2009.

[149] Jeremy Ma, Timothy H Chung, and Joel Burdick. A probabilistic framework for

object search with 6-dof pose estimation. The International Journal of Robotics

Research, 30(10):1209–1228, 2011.

[150] Alper Aydemir, Kristoffer Sjöö, John Folkesson, Andrzej Pronobis, and Patric

Jensfelt. Search in the real world: Active visual object search based on spatial

relations. In 2011 IEEE International Conference on Robotics and Automation,

pages 2818–2824. IEEE, 2011.

[151] Marc Hanheide, Charles Gretton, Richard Dearden, Nick Hawes, Jeremy Wyatt,

Andrzej Pronobis, Alper Aydemir, Moritz Göbelbecker, and Hendrik Zender. Ex-

ploiting probabilistic knowledge under uncertain sensing for efficient robot be-

haviour. In IJCAI, pages 2442–2449, 2011.

BIBLIOGRAPHY 215

[152] Alper Aydemir, Moritz Göbelbecker, Andrzej Pronobis, Kristoffer Sjöö, and Patric

Jensfelt. Plan-based object search and exploration using semantic spatial knowl-

edge in the real world. In ECMR, pages 13–18. Citeseer, 2011.

[153] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra

Malik. Cognitive mapping and planning for visual navigation. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 2616–

2625, 2017.

[154] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-

Fei, and Ali Farhadi. Target-driven visual navigation in indoor scenes using deep

reinforcement learning. In 2017 IEEE international conference on robotics and

automation (ICRA), pages 3357–3364. IEEE, 2017.

[155] Arsalan Mousavian, Alexander Toshev, Marek Fišer, Jana Košecká, Ayzaan

Wahid, and James Davidson. Visual representations for semantic target driven

navigation. In 2019 International Conference on Robotics and Automation

(ICRA), pages 8846–8852. IEEE, 2019.

[156] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta, and

Russ R Salakhutdinov. Object goal navigation using goal-oriented semantic ex-

ploration. Advances in Neural Information Processing Systems, 33:4247–4258,

2020.

[157] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura

Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.

Segment anything. arXiv preprint arXiv:2304.02643, 2023.

216 BIBLIOGRAPHY

[158] Adam Fishman, Adithyavairavan Murali, Clemens Eppner, Bryan Peele, Byron

Boots, and Dieter Fox. Motion policy networks. In Conference on Robot Learn-

ing, pages 967–977. PMLR, 2023.

[159] Changkyu Song and Abdeslam Boularias. Learning to slide unknown objects with

differentiable physics simulations. arXiv preprint arXiv:2005.05456, 2020.

[160] Félix Nadon, Angel J Valencia, and Pierre Payeur. Multi-modal sensing and

robotic manipulation of non-rigid objects: A survey. Robotics, 7(4):74, 2018.

[161] Hang Yin, Anastasia Varava, and Danica Kragic. Modeling, learning, percep-

tion, and control methods for deformable object manipulation. Science Robotics,

6(54):eabd8803, 2021.

[162] Harshit Khurana, Michael Bombile, and Aude Billard. Learning to hit: A statis-

tical dynamical system based approach. In 2021 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 9415–9421. IEEE, 2021.

[163] Harshit Khurana and Aude Billard. Motion planning and inertia-based control for

impact aware manipulation. IEEE Transactions on Robotics, 2023.

[164] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas

Funkhouser. Tossingbot: Learning to throw arbitrary objects with residual physics.

IEEE Transactions on Robotics, 36(4):1307–1319, 2020.

[165] Hao Li, Yizhi Zhang, Junzhe Zhu, Shaoxiong Wang, Michelle A Lee, Huazhe Xu,

Edward Adelson, Li Fei-Fei, Ruohan Gao, and Jiajun Wu. See, hear, and feel:

Smart sensory fusion for robotic manipulation. arXiv preprint arXiv:2212.03858,

2022.

BIBLIOGRAPHY 217

[166] Harold W Kuhn. The hungarian method for the assignment problem. Naval re-

search logistics quarterly, 2(1-2):83–97, 1955.

[167] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[168] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi

Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields

for view synthesis. Communications of the ACM, 65(1):99–106, 2021.

[169] Despoina Paschalidou, Luc Van Gool, and Andreas Geiger. Learning unsupervised

hierarchical part decomposition of 3d objects from a single rgb image. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 1060–1070, 2020.

[170] Tim Oblak, Jaka Šircelj, Vitomir Štruc, Peter Peer, Franc Solina, and Aleš Jaklič.

Learning to predict superquadric parameters from depth images with explicit and

implicit supervision. IEEE Access, 9:1087–1102, 2020.

[171] Matheus Gadelha, Rui Wang, and Subhransu Maji. Shape reconstruction using

differentiable projections and deep priors. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision, pages 22–30, 2019.

국문초록

비전 기반의 물체 조작은 로봇 공학에서 중요한 연구 분야로 부상하였으며, 물체를

파지하거나, 물체를 밀거나, 복잡한 환경 속에서 물체를 재배열하는 등의 작업을 포

함한다. 최근 기술의 발전으로 로봇은 비전 센서를 활용하여 주변 물체들이나 환경과

상호작용을 할 수 있게 되었다. 그러나 이러한 비전 기반 물체 조작 기법들은 여전히

해결해야 할 많은 도전 과제들을 가지고 있다. 딥 러닝 기반 방식에서 나타나는 데

이터의 비효율성부터 실제 환경에서 실용적으로 적용하기 위해 해결해야 할 다양한

제약 사항까지, 이러한 도전 과제들을 해결하는 것은 로봇의 물체 조작 응용 범위를

확장하는 데 매우 중요하다.

본 학위 논문에서는 형상 인식 기법을 통해 비전 기반 물체 조작과 관련된 많은 도

전 과제를 완화할 수 있음을 입증한다. 이 접근 방식은 비전 데이터로부터 물체의 3D

형상을 인식하고, 이를 기반으로 로봇이 취해야할 행동 (예: 물체 파지 및 또는 물체

밀기)을 생성한다. 이러한 방법은 데이터의 비효율성을 해결할 뿐만 아니라 정확성과

효율성을 희생하지 않고도 광범위한 데이터 수집의 필요성을 줄인다. 본 논문에서는

3D 형상 인식이 물체 조작과 관련된 수많은 도전 과제를 효과적으로 해결함을 발견

했으며, 특히 실제 환경에서의 실용적인 적용에서 다양한 어려운 비전 기반 물체 조작

문제를 현저하게 간소화하고 개선하는 데 크게 기여한다. 이렇듯 본 학위 논문에서는

형상 인식 기술과 비전 기반 물체 조작을 통합함으로써 로봇의 환경과의 상호 작용

능력을 상당히 향상시킬 수 있다는 점을 강조한다. 본 학위 논문의 주요 기여는 형상

인식 기반 물체 조작 기법들을 소개하는 데 있다.

첫째로, 본 논문에서는 새로운 형상 인식 기법을 기반으로 한 파지 기법을 소개한

다. 이 방법은 심층 학습 네트워크와 함께 변형 가능한 슈퍼쿼드릭이라고 하는 다양한

형상 템플릿을 통합하여 DSQNet (Deformable SuperQuadric Network) 이라고 하는 새

로운 모델을 제안한다. 이 모델은 부분적인 포인트 클라우드 데이터에서 변형 가능한

슈퍼쿼드릭을 추론하여 완전한 물체 형상을 식별하는 데 사용된다. 지도 학습을 통해

218

219

DSQNet은 변형 가능한 슈퍼쿼드릭의 여덟 가지 매개변수와 자세를 생성하고, 가려진

부분까지 정확하게 고려하여 전체 물체 형상과 일치시킨다. 파지를 위한 후속 전략은

그리퍼의 운동학적 및 구조적 특징과 더불어, 변형 가능한 슈퍼쿼드릭과 이것의 폐

형식 방정식을 활용한다. 비교 분석 결과, DSQNet은 정확성과 속도 측면에서 기존의

형상 인식 방법들을 능가하는 것으로 나타났다. 특히 이 형상 인식 기반 방법은 정교

한 형상 인식 능력 덕분에 기존 기법을 뛰어넘는 파지 성공률을 기록했다.

다음으로, 형상 인식의 장점을 활용하여 밀기 역학 모델의 학습을 용이하게 한다.

우선, 테이블 위에 놓인 물체들의 형상을 또한 슈퍼쿼드릭을 사용해 인식한다. 형상

인식과 밀기 역학 모델 학습을 통합하는 것의 내재적인 장점은 SE(2)-등변 밀기 역학

모델을 자연스럽게 정의할 수 있는 능력이다. 그리고 이는 SQPDNet (SuperQuadric

Pushing Dynamics Network) 라는 SE(2)-등변 밀기 역학 모델을 개발하는 데 기반이

된다. 이 접근 방식은 물리적 시스템 내의 대칭성을 내재적으로 인식하여 역학 모델의

일반화 성능을 상당히 향상시킨다. 비교 평가 결과, 이 형상 인식 기반 모델이 기존의

비전 기반 밀기 역학 모델을 능가하는 것으로 나타났는데, 특히 이는 추가로 부여된

SE(2)-등변성 때문이라고 본 논문에서 주장한다. 더불어, 이 모델의 효과성은 시뮬레

이션 및 실제 실험을 통해 검증된 다양한 물체 밀기 조작 작업에서 모델 기반 최적

제어에 대한 응용을 통해 추가로 입증되었다.

마지막으로, 형상 인식 방법을 사용한 복잡한 선반에서의 기계적 탐색 작업을 다룬

다. 이 작업은 지정된 특정 대상 물체를 복잡한 선반 환경 안에서 찾고 파지하는 것을

포함하며, 비전 센서가 특정 대상 물체를 처음에 감지하지 못하는 경우도 포함된다.

이러한 상황에서 로봇의 임무는 주변 물체를 전략적으로 재배열하여 대상 물체의 위

치를 확인하고, 동시에 선반과 주변 물체와의 충돌을 피하는 것이다. 이러한 도전에

대처하기 위해 이 작업에서도 슈퍼쿼드릭 형상 인식 모델을 활용한다. 이 모델은 본

학위 논문에서 개발된 형상 인식 기반 물체 조작 기술을 사용 가능하게 하며, 가려진

대상 물체의 잠재적인 자세에 대한 신속하고 효율적인 추론을 가능하게 한다. 이를

220

통해 로봇은 대상 물체를 효과적으로 안전하게 찾아 파지 할 수 있다. 이 방법은 시뮬

레이션 및 실제 세계에서 일반적인 로봇 그리퍼를 사용하여 대상 물체를 찾고 붙잡는

데 성공했다.

주요어: 비전 기반 물체 조작, 형상 인식, 로봇 물체 파지, 밀기 동작, 밀기 역학 학습,

기계적 탐색, 물체 재정렬.

학번: 2019-39029

	빈 페이지
	빈 페이지
	빈 페이지

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Create a new document
 Trim: fix size 7.480 x 10.236 inches / 190.0 x 260.0 mm
 Shift: none
 Normalise (advanced option): 'improved'
 Keep bleed margin: no

 D:20240206141541

 32

 D:20201118133059
 737.0079
 B5
 Blank
 538.5827

 Tall
 1
 0
 1
 Full
 771
 335
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0i
 Quite Imposing Plus 4
 1

 243
 242
 243

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Create a new document
 Trim: fix size 7.480 x 10.236 inches / 190.0 x 260.0 mm
 Shift: none
 Normalise (advanced option): 'improved'
 Keep bleed margin: no

 D:20240206141626

 32

 D:20201118133059
 737.0079
 B5
 Blank
 538.5827

 Tall
 1
 0
 1
 Full
 771
 335
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0i
 Quite Imposing Plus 4
 1

 243
 242
 243

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Create a new document
 Trim: fix size 7.480 x 10.236 inches / 190.0 x 260.0 mm
 Shift: none
 Normalise (advanced option): 'improved'
 Keep bleed margin: no

 D:20240206141728

 32

 D:20201118133059
 737.0079
 B5
 Blank
 538.5827

 Tall
 1
 0
 1
 Full
 771
 335
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0i
 Quite Imposing Plus 4
 1

 243
 242
 243

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Create a new document
 Trim: fix size 7.480 x 10.236 inches / 190.0 x 260.0 mm
 Shift: none
 Normalise (advanced option): 'improved'
 Keep bleed margin: no

 D:20240206141744

 32

 D:20201118133059
 737.0079
 B5
 Blank
 538.5827

 Tall
 1
 0
 1
 Full
 771
 335
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0i
 Quite Imposing Plus 4
 1

 243
 242
 243

 1

 HistoryList_V1
 qi2base

