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Grasping Pushing

Vision data Grasp pose

• Require large amounts of training data.
• The trained network will only work reliably for 

the gripper used to collect the training data.

• Require large amounts of training data.
• Generalization performance is less-than-

satisfying.

The primary contribution lies in employing shape recognition to address the challenges!

Vision data 𝑠𝑡 Next vision data 𝑠𝑡+1

𝑎𝑡
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Grasp pose
generation

Target object

RGB-D camera

Partially observed
point cloud

• Shape recognition requires considerably less data.
• Grasp pose generation can be simply modified.
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Robot Grasping

• Recognize the object using 
single deformable superquadric. 

Grasping single-part shapes Grasping multi-part shapes

• Recognize the object using 
multiple deformable superquadrics. 
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Robot Grasping

• Success rate = 92% (92/100)
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Data-Driven Methods

• Generalization performance is less-than-satisfying.
• Require large amounts of training data.
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Reducing Needed Training Data: Equivariance
Objects and actions are translated and rotated.

equivariant with respect to SE(2).
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The main contribution is SE(2)-equivariant data-driven pushing dynamics model

Reducing Needed Training Data: Equivariance

using shape recognition method.
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Robot Pushing Manipulation

Object moving task Object singulation task

• Move the objects to their desired poses.



Robot Pushing Manipulation

Object moving task Object singulation task

• Separate the objects by more than a 
certain distance 𝜏 (e.g., 𝜏 = 20cm).



Robot Pushing Manipulation



Robot Pushing Manipulation

Given the pose and shape parameters of the object, generating grasp poses is easy.



Robot Pushing Manipulation

 Grasp reward is 1 if valid grasp pose exists, 0 otherwise 

Collision free from the table and other objects



Robot Pushing Manipulation

Grasping in cluttered environment Grasping flat and large object

• Make the cylinder object graspable. • Make Cheeze-it box graspable.



DSQNet 
(S. Kim, et al., T-ASE’22)

SQPDNet 
(S. Kim, et al., CoRL’22)

Search-for-Grasp 
(S. Kim, et al. CoRL’23)

Shape Recognition-based Approaches
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Mechanical Search on Cluttered Shelves

RGB-D image

- Occluded by other objects 
- Initially not visible to a camera

Find and grasp the desired target object on a cluttered shelf!

Target object

Found!!
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Mechanical Search Methods

X-RAY (M. Danielczuk, et al., IROS’20)

Cannot be directly applied to the 
shelf environment!
• Limited action space of the 

manipulator
• Limited amount of visual 

information is limited

Grasping Invisible (Y. Yang, et al., RA-L’20)

LAX-RAY (H. Huang, et al., IROS’21) Bluction-DAR (H. Huang, et al., ICRA’22)

• They use a custom long suction 
gripper specialized for 
mechanical search.
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A General Framework for Mechanical Search 

Find and grasp the desired target object on a cluttered shelf!

𝑓(𝑥) indicates whether the target object 
can be present at the pose 𝑥 or not.

𝑔(𝑥) indicates whether the target object 
at the pose 𝑥 is graspable or not.

Existence Function 𝑓: SE 3 → 0, 1 Graspability Function 𝑔: SE 3 → 0, 1
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Find and grasp the desired target object on a cluttered shelf!

Given Observation

Target at 𝑥1
Camera

𝑓 𝑥1 = 1

Candidate poses

𝑓 𝑥2 = 0
Target at 𝑥2

Existence Function 𝑓: SE 3 → 0, 1

To find the fully-occluded target object, 
we should minimize σ𝑥∈𝒳 𝑓 𝑥
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𝑓 𝑥 ↑

uncertainty of actual target pose ↑

Observation
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A General Framework for Mechanical Search 

Find and grasp the desired target object on a cluttered shelf!

Given Observation

Target at 𝑥1
Camera

𝑓 𝑥1 = 1

Candidate poses

𝑓 𝑥2 = 0
Target at 𝑥2

Existence Function 𝑓: SE 3 → 0, 1 Graspability Function 𝑔: SE 3 → 0, 1

Target at 𝑥1

Shelf

𝑔 𝑥1 = 0 𝑔 𝑥2 = 1

Target at 𝑥2



A General Framework for Mechanical Search 

Existence Function 𝑓: SE 3 → 0, 1 Graspability Function 𝑔: SE 3 → 0, 1

Find and grasp the desired target object on a cluttered shelf!



A General Framework for Mechanical Search 

Existence Function 𝑓: SE 3 → 0, 1 Graspability Function 𝑔: SE 3 → 0, 1

Find and grasp the desired target object on a cluttered shelf!

Optimal control formulation

min
𝑎𝑖 𝑖=1

𝑇
෍

𝑥∈𝒳

𝑓𝑇 𝑥 + 𝛼𝑓𝑇 𝑥 1 − 𝑔𝑇 𝑥
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Find and grasp the desired target object on a cluttered shelf!

Leveraging Shape Recognition
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Existence Function መ𝑓: SE 3 → 0, 1 Graspability Function ො𝑔: SE 3 → 0, 1
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Existence Function 𝑓: SE 3 → 0, 1 Graspability Function 𝑔: SE 3 → 0, 1

Find and grasp the desired target object on a cluttered shelf!

Optimal control formulation

min
𝑎𝑖 𝑖=1

𝑇
෍

𝑥∈𝒳

𝑓𝑇 𝑥 + 𝛼𝑓𝑇 𝑥 1 − 𝑔𝑇 𝑥

Tractable optimal control formulation

min
𝑎𝑖 𝑖=1

𝑇
෍

𝑥∈𝒳

መ𝑓𝑇 𝑥 + 𝛼 መ𝑓𝑇 𝑥 1 − ො𝑔𝑇 𝑥

Approximate by leveraging
3D shape recognition

Leveraging Shape Recognition
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Cluttered shelf with 3~4 occluding objects

• Find and grasp the target red cylinder. • Find and grasp the target red cylinder.

Cluttered shelf with 5~6 occluding objects
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• We propose a shape recognition-based approach for learning vision-based object manipulation.

• DSQNet
• We have proposed a novel shape recognition-based grasping using deformable superquadrics 

and deep neural networks.
• Our method shows the best success rates among shape recognition-based grasping methods.

• SQPDNet
• We have proposed a SE(2)-equivariant pushing dynamics model using recognized object shapes.
• Our method significantly outperforms the existing visual pushing dynamics models.

• Search-for-Grasp
• We have proposed a novel mechanical search framework leveraging shape recognition.
• Using standard two-finger gripper, our method can successfully find and grasp the target object 

by rearranging occluding objects.

Conclusion
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