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Vision-based Object Manipulation
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Current challenges lie on manipulating unknown object with only vision sensor data.
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(~10,000,000 pairs)
* Require large amounts of training data.
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* Require large amounts of training data.
e The trained network will only work reliably for
the gripper used to collect the training data.
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Grasping
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Require large amounts of training data.
The trained network will only work reliably for
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Generalization performance is less-than-

The primary contribution lies in employing shape recognition to address the challenges!



Shape Recognition-based Approaches

DSQNet SQPDNet Search-for-Grasp
(S. Kim, et al., T-ASE’22) (S. Kim, et al., CoRL'22) (S. Kim, et al. CoRL'23)
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Shape Recognition-based Grasping

e Shape recognition requires considerably less data.
* Grasp pose generation can be simply modified.

Shape recognition

RGB-D camera
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point cloud full shape

Target object
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generation
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Shape Recognition-based Grasping

Bounding box Superquadrics
(K. Huebner, et al., ICRA’08) (G. Vezzani, ICRA’17)
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Box, cylinder, sphere Custom templates
(S. Jain, et al., ICRA’16) (Y. Lin, et al., ICRA’20)
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Shape expressiveness

Mesh reconstruction
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easily represented.



Shape Recognition-based Grasping

Shape expressiveness

Mesh reconstruction

Even simple everyday objects such as U. Varley, etal., IROS'17)

bottles and mugs often cannot be
easily represented.

Implicit function
(M. Van der Merwe, et al., ICRA’20)
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Deformable Superquadrics
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Our Method

Deformable Superquadric Network
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Our Method
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point cloud point cloud

*Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” Acm Transactions On Graphics (tog), vol. 38, no. 5, pp. 1-12, 2019.
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Deformable Superquadric Network

Translation estimator

=»  MLP (512, 256) => P
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[1] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” Acm Transactions On Graphics (tog), vol. 38, no. 5, pp. 1-12, 2019.



Deformable Superquadric Network
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Deformable Superquadric Network

Translation estimator

-  MP(512,256) > D )
Rotation estimator
= MLP (512, 256) => q
g Size estimator m————
S| = | MLP(512,256) = | a !
y . 1 |
) Sh timat
EdgeConv [1] 8 ape estimator : i >
(64, 64, 128, 256) S| = LMLP(512,256) | = | € i
= Tapering estimator : ]
|
Max pooling § - | MLP(512,256) => ! k !
= Bending estimator : i
. |
Part|a!ly observed = | MLP(512,256) => | b' | Deformable
point cloud l ! superquadric
= ' MLP(512,256) '=» | a ; J
1

? = {Xl E RB}?=1 | I—
DSQ Parameters

[1] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” Acm Transactions On Graphics (tog), vol. 38, no. 5, pp. 1-12, 2019.
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Deformable Superquadric Network

Optimization
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point cloud



Deformable Superquadric Network

Optimization

fit only the “partially observed” point clouds
i.e., do not fit the occluded parts of the objects

Partially observed
point cloud
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Deformable Superquadric Network

Optimization
fit only the “partially observed” point clouds
i.e., do not fit the occluded parts of the objects

Partially observed
point cloud




Deformable Superquadric Network
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Deformable Superquadric Network
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Deformable Superquadric Network
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Deformable Superquadric Network
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(64, 64, 128, 256)

Max pooling

Partially observed
point cloud

P = {Xi € RB}TL-Ll

(peot) @24an1ead |eqo|o

=

->

=

=

MLP (512, 256)
Rotation estimator
MLP (512, 256)
Size estimator
MLP (512, 256)
Shape estimator
MLP (512, 256)
Tapering estimator
MLP (512, 256)
Bending estimator

MLP (512, 256)
MLP (512, 256)

Translation estimator

=

->

=

=

->

->

=

bl

Deformable
superquadric

[1] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” Acm Transactions On Graphics (tog), vol. 38, no. 5, pp. 1-12, 2019.
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Grasp Pose Generation
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Grasp Pose Generation

Sample antipodal points

Sample gripper poses



Grasp Pose Generation

Sample antipodal points Select final grasp pose

Sample gripper poses



Experimental Results

Synthetic dataset
(1200 objects, about 10,000 pairs)

Object types

Primitive types

N
OX Truncated cone  Cylinder Bottle Hammer

[ EVArEY

Ellipsoid Cone  Truncated torus| Dumbbell  Padlock  Screwdriver
k0 ‘, \) ) /\ i / )

Primitive dataset Object dataset

Ground-truth . ’ Segmentation

Primitive  Point cloud . Object Point cloud
point cloud label

Real-world objects




Experimental Results

TABLE 111
VOLUMETRIC [OU COMPARISON BETWEEN MVBB, PS-CNN, SQNET, AND DSQNET FOR OBJECT DATASET
| Objects | B | E | €y | C | TC | TT | Hammer | Cup | Screwdriver | Padlock | Dumbbell | Bottle | Average |
MVBB 3795 | 3026 | 5283 | 3065 | 4448 | 3546 5293 4666 5535 4343 4367 4045 4284
PS-CNN 6442 | 7429 | 7988 | .5946 | 7504 | 6141 8101 8282 .8346 6751 7976 7610 7376
_ SQNet (ours) || 8517 | 8483 | 8903 | 5421 | 7340 | 3691 | 8358 | 7786 | _ 8631 _ | 8182 | _.7589 [ 8120 | 7588
DSQNet (ours) 8759 | .8666 | .8939 | .8039 | .B264 | .6759 8208 8483 8655 8312 J017 3189 8191 |




Experimental Results

TT Hammer Mug Screwdriver Padlock Dumbbell Bottle

Sila Fh
B

(ours)

DSQNet
(ours)



Robot Grasping

Grasping single-part shapes Grasping multi-part shapes

i E"‘\sg

Recognized shape | | — ~ Recognized shape
& selected grasp pose | % i & selected grasp pose

CHEEZIT

®

* Recognize the object using * Recognize the object using
single deformable superquadric. multiple deformable superquadrics.



Grasping Dinnerware Objects
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Superparaboloids
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Superparaboloids

Superquadrics
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e = (e e) : shape parameters

Box Cylinder  Ellipsoid Octahedron Bicone
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Dishes and bowls
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Experimental Results

Partial observation

3D shape recognition
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Experimental Results

Scene Partial observation 3D shape recognition
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Robot Grasping

e Success rate =92% (92/100)
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Needs for Non-prehensile Manipulation

Target object Target object

* Too large to grasp * Too cluttered environment
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Needs for Non-prehensile Manipulation

 Move the target object e Singulate the target object



Shape Recognition-based Approaches
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SQPDNet
(S. Kim, et al., CoRL'22)



Vision-based Pushing Manipulation
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Data-Driven Methods

-

Push action

SE3-Net OC-MPC DIPN DSR-Net
(A. Byravan, et al., ICRA’17) (Y. Ye, et al., CoRL'19) (J. Wang, et al., ICRA’21) (Z. Xu, et al., CoRL'20)



Data-Driven Methods

&

SE3-Net OC-MPC DIPN DSR-Net
(A. Byravan, et al., ICRA’17) (Y. Ye, et al., CoRL'19) (J. Wang, et al., ICRA’21) (Z. Xu, et al., CoRL'20)

* Generalization performance is less-than-satisfying.
 Require large amounts of training data.
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Reducing Needed Training Data: Equivariance
Objects and actions are translated and rotated.
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Reducing Needed Training Data: Equivariance
Objects and actions are translated and rotated.

N\

Scene 1 Scene 2

! 4

Ld I~

A network that possesses this property is said to be equivariant with respect to translations and rotations.



Reducing Needed Training Data: Equivariance

Rot(2.60) txy

Objects and actions are translated and rotated. { 0 1

N\

Scene 1 Scene 2

! 4

Ld I~

A network that possesses this property is said to be equivariant with respect to translations and rotations.

] € SE(2)

equivariant with respect to SE(2).



Reducing Needed Training Data: Equivariance

The main contribution is SE(2)-equivariant data-driven pushing dynamics model



Reducing Needed Training Data: Equivariance

The main contribution is SE(2)-equivariant data-driven pushing dynamics model

using shape recognition method.
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SE(2)-Equivariant Network Architecture

Assume that table surface is flat and
orthogonal to the gravity with uniform
friction coefficient.




SE(2)-Equivariant Network Architecture

Assume that we know the objects
T; € SE(3) object pose
q; € 9 shape parameter
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SE(2)-Equivariant Network Architecture

2 N Assume that we know the objects

T, € SE(3) object pose
q; € Q shape parameter

Tti+l — f({Tiz- QI}a {th, =*e9 T?\h q2; ---; qN} at)
Object 1 Surrounding objects  Action




SE(2)-Equivariant Network Architecture

Assume that we know the objects
T, € SE(3) object pose
q; € Q shape parameter

Tii+l — f({Ti ql}; {TtZ, T?\Ia g2, -"3qN}:at)

Ti2;+1 — f({Tg q?}: {Ti; Tg\ﬁ qdi, .“qu}:at)

T?\}Fl — f({Tf?V~ qN}, {Ti e lef\f—la di, .- qN—l}a at)



SE(2)-Equivariant Network Architecture

Assume that we know the objects
T, € SE(3) object pose
q; € Q shape parameter

f({T?:L ql}: {ng T§V3 q2, .-, qN} at)

f({Té qQ}: {Ti, Tg\h di., .-, qN} at)



SE(2)-Equivariant Network Architecture

Assume that we know the objects
T, € SE(3) object pose
q; € Q shape parameter

Apply C =

/

f{CT:, qu}. {CTL,....CT,, . q2. ...,qn }, Cal)

[Rot(i. 0) txy

0 1 ] e SE(2)

f{CTL, @2}, {CT:,....CT,,. q1....,qn }, Cal)

f({CTﬁ\T qN}a {CTi; cees CT?\T—I? di,---; qN—l}’ Cat)



SE(2)-Equivariant Network Architecture

, TER A Eeeswnoas _
N Assume that we know the objects

T, € SE(3) object pose
q; € 9 shape parameter

Apply C =

/

CT!™ = f({CT!, q1}, {CTS, ....CTY% ., q2.....qn }, Cal)

[Rot(i

{2.9) t’f’] € SE(2)

CTL ™ = f{CTL, 2}, {CTY. ....CTY . qi1. ....qn }, Ca')

CT! = F({CTYy,an}. {CT},....CTy_,.q1.....an—1}. Ca')



SE(2)-Equivariant Network Architecture

7z Assume that we know the objects

T, € SE(3) object pose
q; € Q shape parameter

Definition 1 A pushing dynamics model f is SE(2)-equivariant if
CT!™ = f({CT!, q1}, {CTS, ....CTY% ., q2.....qn }, Cal)

CTL ™ = f{CTL, 2}, {CTY. ....CTY . qi1. ....qn }, Ca')
o

CTﬁ\}Fl — f({CTﬁ\T qN}a {CTi, Ep) CTI}\T—l: q1,---; qN—l}a Cat)
forall C € SE(2)



SE(2)-Equivariant Network Architecture

Visual observation




SE(2)-Equivariant Network Architecture

Visual observation Recognized 3D objects

Shape &
Recognition -

Shape
Recognition

T; € SE(3) Object poses
q4: Shape parameters



SE(2)-Equivariant Network Architecture

Visual observation Recognized 3D objects

T; € SE(3) Object poses {T;}ifil = f({(T:, fli)}iiu a)
q4: Shape parameters



SE(2)-Equivariant Network Architecture

Visual observation Recognized 3D objects

Prediction

T; € SE(3) Object poses {Ti}f\il = f({(Ts, qi)}?;la a)
q4: Shape parameters Superguadric Pushing Dynamics Model (SQPDNet)



SE(2)-Equivariant Network Architecture

Scene before action

Action (p, V)

I

C;'(p.v)
(C;1T1591)
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Action encoder
MLP,

Ego encoder
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Scene encoder
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Max pooling
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N

1
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_"NC.
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Scene after action

T,;0T;

Motion predictor
MLP, — 0T

Concatenated feature ¥:

{



SE(2)-Equivariant Network Architecture




SE(2)-Equivariant Network Architecture

Scene before action

Action (p, V) (C;lTN, qn)



SE(2)-Equivariant Network Architecture

(C;1T1591)

(C; ' T, qn)



SE(2)-Equivariant Network Architecture

Action encoder

— - M, 7 N s
- X
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Max pooling



SE(2)-Equivariant Network Architecture

Action encoder

— MLP, N\ >
- a;
C. (p.v) Ego encoder %
- MLP, /—\ E
(Ui q:) \, Scene encoder b; o
1 - MLP, c
C;, T, . ©
(C; " Ti.aq1) : ~c; S  Motion predictor
- MLP, S -  MP, —T,
(C; ' TN, qn) g

Max pooling



SE(2)-Equivariant Network Architecture
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Experimental Results

Pushing manipulation dataset

Known '  Unknown
]




Experimental Results

Known Unknown
Flow error ([)  Mask IoU (7) Flow error ()  Mask IoU (1)
METHOD visible  full 2D 3D visible  full 2D 3D
2DFlow [17] 2.179 - - - 2.180 - - -
SE3-Net [17] 1.631 - - - 1.701 - - -
SE3Pose-Net [18] 1.639 - - - 1.712 - - -
3DFlow [20] 1.818 1.859 0.747 0.699 1.697 1.719 0.755 0.698
JOSR:Net 200 1322000, 0330,.0.720. 0. 0705 L 1.231....1:524,.,.0.6063,.,.0.632
: R-SQPD-Net (ours) _ 0.575  0.610 0.844 0798 0710 0.726 0.834 0.781 :

Table 2: Evaluation metrics computed within test dataset (the unit of flow error is cm).
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Robot Pushing Manipulation

Object moving task Object singulation task




Robot Pushing Manipulation

Object moving task Object singulation task

* Move the objects to their desired poses.



Robot Pushing Manipulation

Object moving task Object singulation task

e Separate the objects by more than a
certain distance 7 (e.g., T = 20cm).



Robot Pushing Manipulation

-




Robot Pushing Manipulation

Given the pose and shape parameters of the object, generating grasp poses is easy.



Robot Pushing Manipulation

Pre-defined Collision-free
grasp poses grasp poses

- Grasp reward is 1 if valid grasp pose exists, 0 otherwise

Collision free from the table and other objects




Robot Pushing Manipulation

Grasping in cluttered environment Grasping flat and large object

* Make the cylinder object graspable.  Make Cheeze-it box graspable.



Shape Recognition-based Approaches

Search-for-Grasp
(S. Kim, et al. CoRL'23)
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Mechanical Search on Cluttered Shelves

RGB-D image

Manipulator . S
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Mechanical Search on Cluttered Shelves

RGB-D image Target object

Find and grasp the desired target object on a cluttered shelf!



Mechanical Search on Cluttered Shelves

RGB-D image Target object
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Mechanical Search on Cluttered Shelves

RGB-D image Target object

- Occluded by other objects
- Initially not visible to a camera

Find and grasp the desired target object on a cluttered shelf!



Mechanical Search Methods

X-RAY (M. Danielczuk, et al., IR0S’20)  Grasping Invisible (Y. Yang, et al., RA-1'20)



Mechanical Search Methods

Cannot be directly applied to the
shelf environment!

X-RAY (M. Danielczuk, et al., IR0S’20)  Grasping Invisible (Y. Yang, et al., RA-1'20)



Mechanical Search Methods

Cannot be directly applied to the

shelf environment!

* Limited action space of the
manipulator

e Limited amount of visual
information

X-RAY (M. Danielczuk, et al., IR0S’20)  Grasping Invisible (Y. Yang, et al., RA-1'20)



Mechanical Search Methods

LAX-RAY (H. Huang, et al., IROS'21) Bluction-DAR (H. Huang, et al., ICRA’22)



Mechanical Search Methods

* They use a custom long suction
gripper specialized for
mechanical search.

LAX-RAY (H. Huang, et al., IROS'21) Bluction-DAR (H. Huang, et al., ICRA’22)
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A General Framework for Mechanical Search

Find and grasp the desired target object on a cluttered shelf!

Existence Function f: SE(3) — {0, 1} Graspability Function g: SE(3) — {0, 1}

f (x) indicates whether the target object g(x) indicates whether the target object
can be present at the pose x or not. at the pose x is graspable or not.
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Find and grasp the desired target object on a cluttered shelf!

Existence Function f: SE(3) — {0, 1}

Given Observation

o

Candidate poses
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Find and grasp the desired target object on a cluttered shelf!

Existence Function f: SE(3) — {0, 1}

Given Observation
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A General Framework for Mechanical Search

Find and grasp the desired target object on a cluttered shelf!

Existence Function f: SE(3) — {0, 1}

Given Observation

o

Candldate poses Observation
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A General Framework for Mechanical Search

Find and grasp the desired target object on a cluttered shelf!

Existence Function f: SE(3) — {0, 1}

Given Observation

o

Candldate poses Observation
flx) =1
4
Camera __
flx) =0

" Target at X9



A General Framework for Mechanical Search

Find and grasp the desired target object on a cluttered shelf!

Existence Function f: SE(3) — {0, 1}

Given Observation

cJu-

Candldate poses Observation

“ i—l’]‘ fl) =1
Camera
’—l’_". f(x2) =0

rget at Xl

D 1

xXeX
uncertainty of actual target pose T



A General Framework for Mechanical Search

Find and grasp the desired target object on a cluttered shelf!
Existence Function f: SE(3) — {0, 1}
Given Observation z IO

xXeX
uncertainty of actual target pose T

To find the fully-occluded target object,
Candidate poses Observation we should minimize }.,.c f(x)

‘-l’.". flx) =1
’—l’_". flxz) =0




A General Framework for Mechanical Search

Find and grasp the desired target object on a cluttered shelf!

Graspability Function g: SE(3) — {0, 1}
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Find and grasp the desired target object on a cluttered shelf!
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A General Framework for Mechanical Search

Find and grasp the desired target object on a cluttered shelf!

Graspability Function g: SE(3) — {0, 1}

- " Target at x4 Target at xp~,

g(x;) =0 glx,) =1
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Find and grasp the desired target object on a cluttered shelf!
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A General Framework for Mechanical Search

Find and grasp the desired target object on a cluttered shelf!

Existence Function f: SE(3) — {0, 1} Graspability Function g: SE(3) — {0, 1}

Optimal control formulation

min > fr(0l+afr(0(1 - gr @)

a
{” 1xex



Leveraging Shape Recognition

Find and grasp the desired target object on a cluttered shelf!

Existence Function f: SE(3) — {0, 1}

Graspability Function g: SE(3) — {0, 1}




Leveraging Shape Recognition

Find and grasp the desired target object on a cluttered shelf!

Existence Function f: SE(3) — {0, 1}

Observed Depth image

!

o T T

Graspability Function g: SE(3) — {0, 1}
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Leveraging Shape Recognition

Find and grasp the desired target object on a cluttered shelf!

Existence Function f: SE(3) — {0, 1}

Graspability Function g: SE(3) — {0, 1}

Optimal control formulation

a
{” 1xex

min > fr(0 +afr(0(1 - gr (@)




Leveraging Shape Recognition

Find and grasp the desired target object on a cluttered shelf!

Existence Function f: SE(3) — {0, 1} Graspability Function g: SE(3) — {0, 1}

Optimal control formulation

mip > /() + afr()(1 - gr()

a;
t lllxex

Approximate by leveraging

_ _ 3D shape recognition
Tractable optimal control formulation

min Z fr(x) + afT(x)(l - gT(x))

a
{l‘ 1xex



Experimental Results

Simulation environment Real-world environment
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Experimental Results

The number of objects

o

-~

~,

2 - 6 8

METHOD Find Grasp Find Grasp Find Grasp Find  Grasp

O-Search-and-Grasp Succ.  0.98 0.96 1.0 0.88 1.0 0.84 0.98 0.66

Steps  1.163  1.132  1.32 2,136 1.86 3.286 1.694 3.485

O-Search-for-Grasp Succ. 1.0 0.98 1.0 0.82 1.0 0.8 1.0 0.66

Steps 1.24 1408 136 1.854 1.66 2.5 1.74  3.212

R-Search-and-Grasp Succ. 1.0 0.96 0.96 0.84 0.98 0.66 0.98 0.56
............................... Steps.....146.....1,550....1.562....2.063....1.633.....33.....2102.....3.73...
R-Search-for-Grasp Succ. 1.0 0.98 1.0 0.88 1.0 0.72 0.98 0.6
: Steps  1.34 1531 1.74  2.543 1.8 24 1.653 3.846 :

Table 1: Simulation manipulation results



Experimental Results

()
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Cluttered shelf with 3~4 occluding objects

Find and grasp the target red cylinder.

RGB Image

Cluttered shelf with 5~6 occluding objects

Find and grasp the target red cylinder.



Conclusion

DSQNet SQPDNet Search-for-Grasp
(S. Kim, et al., T-ASE’22) (S. Kim, et al., CoRL'22) (S. Kim, et al. CoRL'23)
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Conclusion

 We propose a shape recognition-based approach for learning vision-based object manipulation.

* DSQNet
 We have proposed a novel shape recognition-based grasping using deformable superquadrics
and deep neural networks.
 Our method shows the best success rates among shape recognition-based grasping methods.

* SQPDNet
 We have proposed a SE(2)-equivariant pushing dynamics model using recognized object shapes.
 Our method significantly outperforms the existing visual pushing dynamics models.

e Search-for-Grasp
 We have proposed a novel mechanical search framework leveraging shape recognition.
* Using standard two-finger gripper, our method can successfully find and grasp the target object
by rearranging occluding objects.
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Thank you for listening!

Contact: ksy@robotics.snu.ac.kr
Homepage: https://seungyeon-k.github.io



mailto:ksy@robotics.snu.ac.kr
https://seungyeon-k.github.io/

